713
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Energy and stochasticity: the yin and yang of dislocation patterning

, , &
Pages 289-295 | Received 21 Jul 2022, Published online: 30 Nov 2022

References

  • Habib K, Koyama M, Tsuchiyama T, et al. Visualization of dislocations through electron channeling contrast imaging at fatigue crack tip, interacting with pre-existing dislocations. Mater Res Lett. 2018 Jan;6:61–66.
  • Was GS. Fundamentals of radiation materials science. New York (NY): Springer New York; 2017.
  • Martin ML, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 2019 Feb;165:734–750.
  • Noell P, Carroll J, Hattar K, et al. Do voids nucleate at grain boundaries during ductile rupture? Acta Mater. 2017 Sept;137:103–114.
  • Noell PJ, Sabisch JE, Medlin DL, et al. Nanoscale conditions for ductile void nucleation in copper: vacancy condensation and the growth-limited microstructural state. Acta Mater. 2020 Feb;184:211–224.
  • Groma I, Zaiser M, Ispánovity PD. Dislocation patterning in a two-dimensional continuum theory of dislocations. Phys Rev B. 2016 June;93:Article ID 214110.
  • Wu R, Tüzes D, Ispánovity PD, et al. Instability of dislocation fluxes in a single slip: deterministic and stochastic models of dislocation patterning. Phys Rev B. 2018 Aug;98:Article ID 054110.
  • Xia S, Belak J, El-Azab A. The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip. Model Simul Mater Sci Eng. 2016 Oct;24:Article ID 075007.
  • Hähner P, Zaiser M. Dislocation dynamics and work hardening of fractal dislocation cell structures. Mater Sci Eng. 1999 Nov;272:443–454.
  • Kuhlmann-Wilsdorf D. The theory of dislocation-based crystal plasticity. Philos Mag A. 1999 Apr;79:955–1008.
  • Nabarro FRN. Complementary models of dislocation patterning. Philos Mag A. 2000 Mar;80:759–764.
  • Sandfeld S, Zaiser M. Pattern formation in a minimal model of continuum dislocation plasticity. Model Simul Mater Sci Eng. 2015 Sept;23:Article ID 065005.
  • Zhou Z, Zhu Y, Luo J, et al. Characterisation of dislocation patterning behaviour with a continuum dislocation dynamics model on two parallel slip planes equipped with a deep neural network resolving local microstructures. Int J Solids Struct. 2020 Aug;198:57–71.
  • Hähner P, Bay K, Zaiser M. Fractal dislocation patterning during plastic deformation. Phys Rev Lett. 1998 Sept;81:2470–2473.
  • Ispánovity PD, Papanikolaou S, Groma I. Emergence and role of dipolar dislocation patterns in discrete and continuum formulations of plasticity. Phys Rev B. 2020 Jan;101:Article ID 024105.
  • Wu R, Zaiser M. Cell structure formation in a two-dimensional density-based dislocation dynamics model. Mater Theory. 2021 Dec;5:3.
  • Devincre B, Kubin L, Lemarchand C, et al. Mesoscopic simulations of plastic deformation. Mater Sci Eng. 2001 Jul;309–310:211–219.
  • Gómez-García D, Devincre B, Kubin LP. Dislocation patterns and the similitude principle: 2.5D mesoscale simulations. Phys Rev Lett. 2006 Mar;96:Article ID 125503.
  • Hussein AM, Rao SI, Uchic MD, et al. Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater. 2015 Feb;85:180–190.
  • Arsenlis A, Cai W, Tang M, et al. Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng. 2007 Sept;15:553–595.
  • Sills RB, Aghaei A, Cai W. Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model Simul Mater Sci Eng. 2016 May;24:Article ID 045019.
  • Deka N, Sills RB. Monte Carlo-discrete dislocation dynamics: a technique for studying the formation and evolution of dislocation structures. Model Simul Mater Sci Eng. 2022 Mar;30:Article ID 024002.
  • Sills RB, Bertin N, Aghaei A, et al. Dislocation networks and the microstructural origin of strain hardening. Phys Rev Lett. 2018 Aug;121:Article ID 085501.
  • Harris ZD, Lawrence SK, Medlin DL, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel. Acta Mater. 2018 Oct;158:180–192.
  • Cai W, Arsenlis A, Weinberger C, et al. A non-singular continuum theory of dislocations. J Mech Phys Solids. 2006 Mar;54:561–587.
  • Bertin N. Connecting discrete and continuum dislocation mechanics: a non-singular spectral framework. Int J Plast. 2019 Nov;122:268–284.
  • Chattopadhyay S, Ayyub P, Palkar VR, et al. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO 3. Phys Rev B. 1995 Nov;52:13177–13183.
  • Sknepnek R, Vojta T. Smeared phase transition in a three-dimensional Ising model with planar defects: Monte Carlo simulations. Phys Rev B. 2004 May;69:Article ID 174410.
  • Hrahsheh F, Nozadze D, Vojta T. Composition-tuned smeared phase transitions. Phys Rev B. 2011 June;83:Article ID 224402.
  • Cai W, Nix WD. Imperfections in crystalline solids. Cambridge: Cambridge University Press; 2016.
  • Oudriss A, Feaugas X. Length scales and scaling laws for dislocation cells developed during monotonic deformation of (001) nickel single crystal. Int J Plast. 2016 Mar;78:187–202.
  • Zaiser M. Scale invariance in plastic flow of crystalline solids. Adv Phys. 2006 Jan;55:185–245.
  • Devincre B, Hoc T, Kubin L. Dislocation mean free paths and strain hardening of crystals. Science. 2008 June;320:1745–1748.
  • Basinski SJ, Basinski ZS. Plastic deformation and work hardening. In: Nabarro F, editor. Dislocations in solids, Vol. 4. New York (NY): North-Holland; 1979.