1,234
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Nanostructural and piezoelectric characterization of electro-formed δ-phase poly(vinylidene fluoride) thin films

, ORCID Icon, , , , & show all
Pages 296-303 | Received 27 Sep 2022, Published online: 30 Nov 2022

References

  • Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions. 1989;18:143–211.
  • Chen X, Han X, Shen QD. PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater. 2017;3:1600460.
  • Guo M, Jiang J, Qian J, et al. Flexible robust and high-density FeRAM from array of organic ferroelectric nano-lamellae by self-assembly. Adv Sci. 2019;6:1801931. Available from: https://onlinelibrary.wiley.com/doi/10.1002advs.201801931
  • Garcia V, Bibes M. Ferroelectric tunnel junctions for information storage and processing. Nat Commun. 2014;5:4289.
  • López-Encarnación JM, Burton JD, Tsymbal EY, et al. Organic multiferroic tunnel junctions with ferroelectric poly(vinylidene fluoride) barriers. Nano Lett. 2011;11:599–603.
  • Kusuma DY, Lee PS. Ferroelectric tunnel junction memory devices made from monolayers of vinylidene fluoride oligomers. Adv Mater. 2012;24:4163–4169.
  • Ruan L, Yao X, Chang Y, et al. Properties and applications of the β phase poly(vinylidene fluoride). Polymers (Basel). 2018;10:228.
  • Das MS, Mohapatra PC, Aria AI, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci. 2021;8:2100864.
  • Laudari A, Barron J, Pickett A, et al. Tuning charge transport in PVDF-based organic ferroelectric transistors: status and outlook. ACS Appl Mater Interfaces. 2020;12:26757–26775.
  • Georgakopoulos S, Del Pozo FG, Mas-Torrent M. Flexible organic transistors based on a solution-sheared PVDF insulator. J Mater Chem C. 2015;3:12199–12202.
  • Costa P, Nunes-Pereira J, Pereira N, et al. Recent progress on piezoelectric, pyroelectric, and magnetoelectric polymer-based energy-harvesting devices. Energy Technol. 2019;7:1–19.
  • Wang Y, Zhu X, Zhang T, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. Appl Energy. 2018;230:52–61. doi:10.1016/j.apenergy.2018.08.080
  • Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci. 2014;39:683–706. doi:10.1016/j.progpolymsci.2013.07.006
  • Li M, Wondergem HJ, Spijkman MJ, et al. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat Mater. 2013;12:433–438.
  • Sencadas V, Gregorio R, Lanceros-Méndez S. Α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B Phys. 2009;48:514–525.
  • Park JH, Kurra N, AlMadhoun MN, et al. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. J Mater Chem C. 2015;3:2366–2370.
  • Davis GT, McKinney JE, Broadhurst MG, et al. Electric-field-induced phase changes in poly(vinylidene fluoride). J Appl Phys. 1978;49:4998–5002.
  • Scheinbeim JI, Yoon CH, Pae KD, et al. Poling-time dependence of the field-induced phase transition and piezoelectric response of poly(vinylidene fluoride) films. J Polym Sci Polym Phys Ed. 1980;18:2271–2276. Available from: https://onlinelibrary.wiley.com/doi/10.1002pol.1980.180181111
  • Naegele D, Yoon DY, Broadhurst MG. Formation of a new crystal form (α p) of poly(vinylidene fluoride) under electric field. Macromolecules. 1978;11:1297–1298. Available from: https://pubs.acs.org/doi/abs/10.1021ma60066a051
  • Dvey-Aharon H, Taylor PL, Hopfinger AJ. Dynamics of the field-induced transition to the polar α phase of poly(vinylidene fluoride). J Appl Phys. 1980;51:5184–5187.
  • Hasegawa R, Takahashi Y, Chatani Y, et al. Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym J. 1972;3:600–610.
  • Bachmann MA, Lando JB. A reexamination of the crystal structure of phase II of poly(vinylidene fluoride). Macromolecules. 1981;14:40–46.
  • Li M, Katsouras I, Piliego C, et al. Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J Mater Chem C. 2013;1:7695–7702.
  • Garcia R. Amplitude modulation atomic force microscopy. Weinheim: Wiley-VC Verlag GmbH & Co. KGaA; 2010.
  • Korolkov VV, Summerfield A, Murphy A, et al. Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy. Nat Commun. 2019;10:1537. Available from: http://www.nature.com/articles/s41467-019-09571-6
  • Hafner J, Benaglia S, Richheimer F, et al. Multi-scale characterisation of a ferroelectric polymer reveals the emergence of a morphological phase transition driven by temperature. Nat Commun. 2021;12:1–9. doi:10.1038/s41467-020-20407-6
  • Katsouras I, Asadi K, Li M, et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat Mater. 2016;15:78–84.
  • Kepler RG, Anderson RA. Ferroelectric polymers. Adv Phys. 1992;41:1–57.
  • Benz M, Euler WB, Gregory OJ. The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules. 2002;35:2682–2688.
  • Lovinger AJ. Molecular mechanism for α-γ transformation in electrically poled poly(vinylidene fluoride). Macromolecules. 1981;14:225–227.
  • Bachmann M, Gordon WL, Weinhold S, et al. The crystal structure of phase IV of poly(vinylidene fluoride). J Appl Phys. 1980;51:5095–5099.
  • Wang TT, West JE. Polarization of poly(vinylidene fluoride) by application of breakdown fields. J Appl Phys. 1982;53:6552–6556. Available from: http://aip.scitation.org/doi/10.10631.330075
  • Das Gupta DK, Doughty K. Changes in x-ray diffraction patterns of polyvinylidene fluoride due to corona charging. Appl Phys Lett. 1977;31:585–587.
  • Das-Gupta DK, Doughty K. Corona charging and the piezoelectric effect in polyvinylidene fluoride. J Appl Phys. 1978;49:4601–4603.
  • Miller SL, Nasby RD, Schwank JR, et al. Device modeling of ferroelectric capacitors. J Appl Phys. 1990;68:6463–6471.
  • Martín J, Zhao D, Lenz T, et al. Solid-state-processing of δ-PVDF. Mater Horizons. 2017;4:408–414.
  • Li M, Katsouras I, Asadi K, et al. Low voltage extrinsic switching of ferroelectric δ-PVDF ultra-thin films. Appl Phys Lett. 2013;103:072903.
  • Hafner J, Teuschel M, Schneider M, et al. Origin of the strong temperature effect on the piezoelectric response of the ferroelectric (co-)polymer P(VDF 70 -TrFE 30). Polymer. 2019;170:1–6. doi:10.1016/j.polymer.2019.02.064
  • Hafner J, Teuschel M, Disnan D, et al. Large bias-induced piezoelectric response in the ferroelectric polymer P(VDF-TrFE) for MEMS resonators. Mater Res Lett. 2021;9:195–203. doi:10.1080/21663831.2020.1868593
  • Furukawa T, Seo N. Electrostriction as the origin of piezoelectricity in ferroelectric polymers. Jpn J Appl Phys. 1990;29:675–680.
  • Furukawa T, Nakajima K, Koizumi T, et al. Measurements of nonlinear dielectricity in ferroelectric polymers. Jpn J Appl Phys. 1987;26:1039–1045. Available from: https://iopscience.iop.org/article/10.1143JJAP.26.1039
  • You L, Zhang Y, Zhou S, et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci Adv. 2019;5:1–10. doi:10.1126/sciadv.aav3780