2,870
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Superior strength–ductility combination in Al alloys via dislocation gradient structure

, , , , , , & ORCID Icon show all
Pages 347-353 | Received 26 Sep 2022, Published online: 05 Dec 2022

References

  • Stemper L, Tunes MA, Tosone R, et al. On the potential of aluminum crossover alloys. Prog Mater Sci. 2022;124:100873.
  • Sercombe TB, Schaffer GB. Rapid manufacturing of aluminum components. Science. 2003;301:1225–1227.
  • Chen Y, Weyland M, Hutchinson CR. The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys. Acta Mater. 2013;61:5877–5894.
  • Yang Z, Banhart J. Natural and artificial ageing in aluminium alloys – the role of excess vacancies. Acta Mater. 2021;215:117014.
  • Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature. 2022;602:437–441.
  • Löffler H, Kovacs I, Lendvai J. Decomposition processes in Al-Zn-Mg alloys. J Mater Sci. 1983;18:2215–2240.
  • Liu JZ, Chen JH, Yang XB, et al. Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy. Scr Mater. 2010;63:1061–1064.
  • Chen JZ, Lv LX, Zhen L, et al. Precipitation strengthening model of AA 7055 aluminium alloy. Acta Metall Sin. 2021;57:353–362.
  • Sun WW, Zhu YM, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science. 2019;363:972–975.
  • Shi L, Baker K, Young R, et al. The effect of chemical patterning induced by cyclic plasticity on the formation of precipitates during aging of an Al–Mg–Si alloy. Mater Sci Eng A. 2021;815:141265.
  • Zhang Q, Zhu YM, Gao X, et al. Training high-strength aluminum alloys to withstand fatigue. Nat Commun. 2020;11:5198.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590.
  • Long JZ, Pan QS, Tao NR, et al. Residual stress induced tension-compression asymmetry of gradient nanograined copper. Mater Res Lett. 2018;6:456–461.
  • Wei YJ, Li YQ, Zhu LC, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580.
  • Cheng Z, Zhou HF, Lu QH, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362:eaau1925.
  • Pan QS, Zhang LX, Feng R, et al. Gradient-cell–structured high-entropy alloy with exceptional strength and ductility. Science. 2021;374:984–989.
  • Cassell AM, Robson JD, Race CP, et al. Dispersoid composition in zirconium containing Al-Zn-Mg-Cu (AA7010) aluminium alloy. Acta Mater. 2019;169:135–146.
  • Su JQ, Nelson TW, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. 2003;51:713–729.
  • Minor AM, Asif SA, Shan Z, et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater. 2006;5:697–702.
  • Oh SH, Legros M, Kiener D, et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater. 2009;8:95–100.
  • De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • Wang ZW, Lu WJ, An FC, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy. Nat Commun. 2022;13:3598.
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230.
  • An XL, Wang ZW, Ni S, et al. The tension-compression asymmetry of martensite phase transformation in a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Sci China Mater 2020;63:1797–1807.
  • Lei YB, Wang ZB, Xu JL, et al. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure. Acta Mater. 2019;168:133–142.
  • Wu WQ, Guo L, Liu B, et al. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy. Philos Mag. 2017;97:3229–3245.
  • Qu Z, Zhang ZJ, Yan JX, et al. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys. J Mater Sci Technol. 2022;122:54–67.
  • Liu XH, Liu YZ, Zhou ZG, et al. A combination strategy for additive manufacturing of AA2024 high-strength aluminium alloys fabricated by laser powder bed fusion: role of hot isostatic pressing. Mater Sci Eng A. 2022;850:143597.
  • Zheng RX, Sun YB, Ameyama K, et al. Optimizing the strength and ductility of spark plasma sintered Al 2024 alloy by conventional thermo-mechanical treatment. Mater Sci Eng A. 2014;590:147–152.
  • Ma YW, Choi JW, Yoon KB. Change of anisotropic tensile strength due to amount of severe plastic deformation in aluminum 2024 alloy. Mater Sci Eng A. 2011;529:1–8.
  • Mehta A, Zhou L, Huynh T, et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit Manuf. 2021;41:101966.
  • Yan WL, Liu XH, Huang JY, et al. Strength and ductility in ultrafine-grained wrought aluminum alloys. Mater Design. 2013;49:520–524.
  • Zhao YH, Liao XZ, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18:2280–2283.
  • Yoder JK, Griffiths RJ, Yu HZ. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties. Mater Design. 2021;198:109288.
  • Leng L, Zhang ZJ, Duan QQ, et al. Improving the fatigue strength of 7075 alloy through aging. Mater Sci Eng A. 2018;738:24–30.
  • Liu G, Sun J, Nan CW, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 2005;53:3459–3468.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2020;9:1–31.
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.
  • Dickson JI, Boutin J, Handfield L. A comparison of two simple methods for measuring cyclic internal and effective stresses. Mater Sci Eng. 1984;64:L7–L11.
  • Chrominski W, Lewandowska M. The importance of microstructural heterogeneities in the work hardening of ultrafine-grained aluminum, studied by in-situ TEM straining and mechanical tests. Mater Sci Eng A. 2019;764:138200.
  • Yasnikov IS, Kaneko Y, Uchida M, et al. The grain size effect on strain hardening and necking instability revisited from the dislocation density evolution approach. Mater Sci Eng A. 2022;831:142330.
  • Wang BB, Xie GM, Wu LH, et al. Grain size effect on tensile deformation behaviors of pure aluminum. Mater Sci Eng A. 2021;820:141504.