2,541
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Laser additive manufacturing of titanium alloys with various Al contents

, ORCID Icon & ORCID Icon
Pages 391-398 | Received 20 Sep 2022, Published online: 11 Jan 2023

References

  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci. 2018;92:112–224.
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372:1487.
  • Vilaro T, Colin C, Bartout JD. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans A. 2011;42:3190–3199.
  • Zhang D, Wang L, Zhang H, et al. Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization. Acta Mater. 2020;189:93–104.
  • Cao S, Zou Y, Lim CVS, et al. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment, microstructure, and property. Light: Adv Manuf. 2021;2:313–332.
  • Liu S, Shin YC. Additive manufacturing of Ti-6Al-4V alloy: a review. Mater Design. 2019;164:107552.
  • Li CL, Hong JK, Narayana PL, et al. Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment. Mater Sci Eng A. 2021;799:140367.
  • Cao S, Chu R, Zhou X, et al. Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V. J Alloys Compd. 2018;744:357–363.
  • Zhang TL, Huang ZH, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science. 2021;374:478–482.
  • Wang L, Song Z, Zhang X, et al. Developing ductile and isotropic Ti alloy with tailored composition for laser powder bed fusion. Addit Manuf. 2022;52:102656.
  • Fitzner A, Prakash DGL, Fonseca JQD, et al. The effect of aluminium on twinning in binary alpha-titanium. Acta Mater. 2016;103:341–351.
  • Radecka A, Bagot PAJ, Martin TL, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V. Acta Mater. 2016;112:141–149.
  • Niessen F, Nyyssönen T, Gazder AA, et al. Parent grain reconstruction from partially or fully transformed microstructures in MTEX, 2021. http://arxiv.org/abs/2104.14603.
  • Yang J, Yu H, Yin J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Design. 2016;108:308–318.
  • Hosford WF. Mechanical behavior of materials. New York: Cambridge University Press; 2005.
  • Qiu C, Adkins JEN, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mater Sci Eng A. 2013;578:230–239.
  • Baghi AD, Nafisi S, Hashemi R, et al. Experimental realisation of build orientation effects on the mechanical properties of truly as-built Ti-6Al-4V SLM parts. J Manuf Process. 2021;64:140–152.
  • Vrancken B, Thijs L, Kruth JP, et al. Heat treatment of Ti6Al4 V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd. 2012;541:177–185.
  • Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Tech. 2015;220:202–214.
  • Voisin T, Calta NP, Khairallah SA, et al. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Mater Design. 2018;158:113–126.
  • Sun S, Zhang D, Palanisamy S, et al. Mechanical properties and deformation mechanisms of martensitic Ti6Al4 V alloy processed by laser powder bed fusion and water quenching. Mater Sci Eng A. 2022;839:142817.
  • Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84.
  • Williams JC, Baggerly RG, Paton NE. Deformation behavior of HCP Ti-Al alloy single crystals. Metall Mater Trans A. 2002;33:837–850.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532.
  • Fang XT, He GZ, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020;186:644–655.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505.
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Zhu YT. Introduction to heterostructured materials: a fast emerging field. Metall Mater Trans A. 2021;52:4715–4726.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.