1,172
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Correlation the <112>{111} slip with high-temperature tension/compression asymmetry in the single-crystal nickel-based superalloy PWA1483

, , , , , & show all
Pages 399-406 | Received 13 Oct 2022, Published online: 19 Jan 2023

References

  • Cailletaud G, Cormier J, Eggeler G, et al. Nickel base single crystals across length scales. Amsterdam: Elsevier; 2022.
  • Ru Y, Hu B, Zhao W, et al. Topologically inverse microstructure in single-crystal superalloys: microstructural stability and properties at ultrahigh temperature. Mater Res Letts. 2021;9(12):497–506.
  • Knowles DM, Gunturi S. The role of<112>{111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4. Mater Sci Eng A. 2002;328(1):223–237.
  • Moverare JJ, Johansson S, Reed RC. Deformation and damage mechanisms during thermal–mechanical fatigue of a single-crystal superalloy. Acta Mater. 2009;57(7):2266–2276.
  • Sun F, Zhang J, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling. Acta Mater. 2014;67:45–57.
  • Shah D, Lin L, Duhl D. Orientation dependence of yield strength in Ni-base super-alloy single-crystal. J Met. 1980;32(8):62–62.
  • Pope DP, Ezz SS. Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ’. Inter Metals Revs. 1984;29(1):136–167.
  • Shah DM, Duhl DN. The Effect of orientation, temperature and gamma prime size on the yield strength of a single crystal nickel base superalloy. In: Gell M, editor. Proceedings of the Fifth International symposium on Superalloys; 1984: October 7-11. Pennsylvania: AIME; 1984. p. 105–114.
  • Heredia FE, Pope DP. The tension/compression flow asymmetry in a high γ’ volume fraction nickel base alloy. Acta Metall. 1986;34(2):279–285.
  • Miner RV, Gabb TP, Gayda J, et al. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part III. Tension-compression Anisotropy. Metall Trans A. 1986;17(3):507–512.
  • Jiao F, Bettge D, Österle W, et al. Tension—compression asymmetry of the (001) single crystal nickel base superalloy SC16 under cyclic loading at elevated temperatures. Acta Mater. 1996;44(10):3933–3942.
  • Nitz A, Lagerpusch U, Nembach E. CRSS anisotropy and tension/compression asymmetry of a commercial superalloy. Acta Mater. 1998;46(13):4769–4779.
  • Kakehi K. Tension/compression asymmetry in creep behavior of a Ni-based superalloy. Scripta Mater. 1999;41(5):461–465.
  • Sondhi SK, Dyson BF, McLean M. Tension-compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing. Acta Mater. 2004;52(7):1761–1772.
  • Yamashita M, Kakehi K. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloy with a high amount of tantalum. Scripta Mater. 2006;55(2):139–142.
  • Tsuno N, Shimabayashi S, Kakehi K, et al. Tension/compression asymmetry in yield and creep Strengths of Ni-Based superalloys. In: Reed RC, Green KA, Caron P, Gabb TP, Fahrmann MG, editor. Proceeding of the 11th international symposium on superalloys; 2008 September 14-18. Champion, Pennsylvania: AIME; 2008. p. 433–442.
  • Leidermark D, Moverare JJ, Johansson S, et al. Tension/compression asymmetry of a single-crystal superalloy in virgin and degraded condition. Acta Mater. 2010;58(15):4986–4997.
  • Wang BZ, Liu DS, Wen ZX, et al. Tension/compression asymmetry of [001] single-crystal nickel-based superalloy DD6 during low cycle fatigue. Mater Sci Eng A. 2014;593:31–37.
  • Lenz M, Eggeler YM, Müller J, et al. Tension/compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Mater. 2019;166:597–610.
  • Lall C, Chin S, Pope DP. The orientation and temperature dependence of the yield stress of Ni3 (Al, Nb) single crystals. Metall Trans A. 1979;10(9):1323–1332.
  • Guo Z, Fu T, Fu H. Crystal orientation measured by XRD and annotation of the butterfly diagram. Mater Charact. 2000;44(4):431–434.
  • Kozar RW, Suzuki A, Milligan WW, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys. Metall Mater Trans A. 2009;40(7):1588–1603.
  • Nazmy M, Denk J, Baumann R, et al. Environmental effects on tensile and low cycle fatigue behavior of single crystal nickel base superalloys. Scripta Mater. 2003;48(5):519–524.
  • Standard test methods for tension testing of metallic materials. West Conshohocken: ASTM, 2011. Standard No. E8/E8M-11. 2012.
  • Standard test methods of compression testing of metallic materials at room temperature. West Conshohocken: ASTM, 2009. Standard No. E9-09. 2009.
  • Wen Z, Pei H, Wang B, et al. The tension/compression asymmetry of a high γ′ volume fraction Nickel-based single-crystal superalloy. Mater High Temp. 2016;33(1):68–74.
  • Pollock TM, Field RD. Dislocations and high-temperature plastic deformation of superalloy single crystals. In: Nabarro FRN, Duesbery MS, editor. Dislocations in solids. Vol. 11. Amsterdam: Elsevier; 2002. p. 547–618.
  • Zhang P, Yuan Y, Li J, et al. Deformation modes in the single-crystal nickel-based superalloy CMSX-4 during compressive deformation at 1000 °C. Metall Mater Trans A. 2022;53(2):388–393.
  • Zhang JX, Wang JC, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Mater. 2005;53(17):4623–4633.
  • Zhang P, Li J, Gong XF, et al. Creep behavior and deformation mechanisms of a novel directionally solidified Ni-base superalloy at 900 °C. Mater Charact. 2019;148:201–207.
  • Milligan WW, Antolovich SD. Yielding and deformation behavior of the single crystal superalloy PWA 1480. Metall Trans A. 1987;18(1):85–95.
  • Eggeler G, Dlouhy A. On the formation of <010>-dislocations in the γ′-phase of superalloy single crystals during high temperature low stress creep. Acta Mater. 1997;45(10):4251–4262.
  • Zhang JX, Murakumo T, Koizumi Y, et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy. Acta Mater. 2003;51(17):5073–5081.
  • Cui CY, Gu YF, Yuan Y, et al. Dynamic strain aging in a new Ni-Co base superalloy. Scripta Mater. 2011;64(6):502–505.
  • Le Graverend J-B, Pettinari-Sturmel F, Cormier J, et al. Mechanical twinning in Ni-based single crystal superalloys during multiaxial creep at 1050 °C. Mater Sci Eng A. 2018;722:76–87.
  • Smith TM, Good BS, Gabb TP, et al. Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys. Acta Mater. 2019;172:55–65.
  • Barba D, Egan A, Gong Y, et al. Rationalisation of the micromechanisms behind the high-temperature strength limit in single-crystal nickel-based superalloys. In: Tin S, Hardy M, Clews J, Cormier J, Feng Q, Marcin J, O'Brien C, Suzuki A, editor. Proceedings of the 14th international symposium on superalloys; 2021 September 13-16. Cham: Spinger; 2020. p. 260–272.
  • Feller-Kniepmeier M, Link T, Poschmann I, et al. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ′ phase. Acta Mater. 1996;44(6):2397–2407.
  • Barba D, Alabort E, Pedrazzini S, et al. On the microtwinning mechanism in a single crystal superalloy. Acta Mater. 2017;135:314–329.
  • Tan ZH, Wang XG, Du YL, et al. Temperature dependence on tensile deformation mechanisms in a novel nickel-based single crystal superalloy. Mater Sci Eng A. 2020;776:138997.
  • Ding Q, Bei H, Yao X, et al. Temperature effects on deformation substructures and mechanisms of a Ni-based single crystal superalloy. Appl Mater Today. 2021;23:101061.
  • Zhang P, Yuan Y, Gao ZH, et al. Microtwinning in the nickel-based superalloy CM247LC during compression tests. Phil Mag. 2022;102:2235–2255.
  • Schubert F, Penkalla HJ, Singheiser L. Dislocation microstructures of single crystal <001> CMSX-4 specimens tensile tested at 700 and 1000°C. Int J Mater Res. 2003;94(6):705–710.
  • Yuan SY, Jiang ZH, Liu JZ, et al. Nano-twinning in a γ′ precipitate strengthened Ni-based superalloy. Mater Res Letts. 2018;6(12):683–688.
  • Kilaas R. Optimal and near-optimal filters in high-resolution electron microscopy. J Microsc. 1998;190(1-2): 45-51.
  • Edington JW. Practical electron microscopy in materials science. London: Macmillan; 1976.
  • Mukherji D, Jiao F, Chen W, et al. Stacking fault formation in γ′ phase during monotonic deformation of IN738LC at elevated temperatures. Acta Metall Mater. 1991;39(7):1515–1524.
  • Huis in't Veld AJ, Boom G, Bronsveld PM, et al. Superlattice intrinsic stacking faults in γ′ precipitates. Scripta Metall. 1985;19(9):1123–1128.
  • Caron P, Khan T, Veyssière P. On precipitate shearing by superlattice stacking faults in superalloys. Phil Mag A. 1988;57(6):859–875.
  • Zhang P, Yuan Y, Li B, et al. Investigation of tensile deformation mechanisms at room temperature in a new Ni-based single crystal superalloy. Phil Mag Letts. 2016;96(6):238–245.
  • Guimier A, Strudel JL. Stacking fault formation and mechanical twinning process in a Nickel base superalloy during tensile deformation at high temperature. Second international conference on The strength of metals and alloys; California: ASM. 1970. p. 56-59.
  • Dang CX, Zhang P, Li J, et al. The role of <112>{111} slip in the initial plastic deformation of Ni-base superalloys at room temperature. Materials Charact. 2020;170:110648.
  • Bonnet R, David D. Estimation des energies de fautes intrinseques dans des phases (Ni, Al, Ti, Cr) basees sur Ni3Al. Acta Metall Mater. 1991;39(3):329–340.
  • Yuan Y, Gu Y, Cui C, et al. Influence of Co content on stacking fault energy in Ni-Co base disk superalloys. J Mater Res. 2011;26(22):2833–2837.
  • Titus MS, Eggeler YM, Suzuki A, et al. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Mater. 2015;82:530–539.
  • Breidi A, Allen J, Mottura A. First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys. Acta Mater. 2018;145:97–108.
  • Suzuki K, Ichihara M, Takeuchi S. Dissociated structure of superlattice dislocations in Ni3Ga with the L12 structure. Acta Metall. 1979;27(2):193–200.
  • Milligan WW, Antolovich SD. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall Trans A. 1991;22(10):2309–2318.
  • Hirth JP, Lothe J. Theory of dislocations. 2rd ed Malabar: John Wiley and Sons; 1982.
  • Blum W, Reppich B. Creep of particle-strengthened alloys. In: Wilshire B, Evans RW, editor. Creep behaviour of crystalline solids. Swansea: Pineridge Press; 1985. p. 83–135.
  • Knowles DM, Chen QZ. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4. Mater Sci. Eng A. 2003;340(1):88–102.
  • Brown R, Ham R. Dislocation-particle interactions. In: Kelly A, Nicholson RB, editor. Strengthening methods in crystals. Amsterdam: Elsevier; 1971. p. 9–135.