1,614
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Long-period stacking ordering induced ductility of nanolamellar TiAl alloy at elevated temperature

, ORCID Icon, , , , , & show all
Pages 414-421 | Received 12 Dec 2022, Published online: 01 Feb 2023

References

  • Lu M, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature. Science. 2000;287:1463–1466.
  • Fang WLLTH, Tao NR, Lu K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590.
  • De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • Schiotz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science. 2003;301(5638):1357–1359.
  • Appel F, Clemens H, Fischer FD. Modeling concepts for intermetallic titanium aluminides. Prog Mater Sci. 2016;81:55–124.
  • Chen G, Peng Y, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater. 2016;15(8):876–881.
  • Bewlay BP, Nag S, Suzuki A, et al. Tial alloys in commercial aircraft engines. Mater High Temp. 2016;33(4–5):549–559.
  • Fritz Appel JDHP, Oehring M. Gamma titanium aluminide alloys. Germany: WILEY-VCH Verlag Gmbh & Co. KGaA; 2011.
  • Liu PJMaCT. Development of ultrafine lamellar structures in two phase γ-TiAl alloys. Metall Mater Trans A. 1998;29A:105–117.
  • Liu JPLZC, Li SJ, Chen GL. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics. 2002;10:653–659.
  • Kad BK, Asaro RJ. Apparent Hall-Petch effects in polycrystalline lamellar TiAl. Philos Mag A. 1997;75(1):87–104.
  • Sun YQ. Strengthening of fully-lamellar TiAl: a dislocation pileup analysis. Mater Sci Eng A. 1997;239–240:131–136.
  • Maruyama K, Yamaguchi M, Suzuki G, et al. Effects of lamellar boundary structural change on lamellar size hardening in TiAl alloy. Acta Mater. 2004;52(17):5185–5194.
  • Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464(7290):877–880.
  • Wang LCZJG, Chen GL, Ye HQ. Formation of stress-induced 9R structure in a hot-deformed Ti-45Al-10Nb alloy. Scr Mater. 1997;37:135–140.
  • Song L, Xu XJ, Peng C, et al. Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy. Philos Mag Lett. 2015;95(2):85–91.
  • Zheng G, Tang B, Zhao S, et al. Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800°C in a TiAl alloy. Acta Mater. 2022;225:1–14.
  • Chlupová A, Heczko M, Obrtlík K, et al. Mechanical properties of high niobium TiAl alloys doped with Mo and C. Mater Des. 2016;99:284–292.
  • Yan C, Zhengdong L, Godfrey A, et al. Microstructure evolution and mechanical properties of Inconel 740H during aging at 750 °C. Mater Sci Eng A. 2014;589:153–164.
  • Ou M, Ma Y, Ge H, et al. Microstructure evolution and mechanical properties of a new cast Ni-base superalloy with various Ti contents. J Alloys Compd. 2018;735:193–201.
  • Xiao Z, He J, Gu J, et al. Tensile properties and deformation mechanisms of a new Ni–Co base superalloy from room temperature up to 750°C. Intermetallics. 2022;150:1–7.
  • Zenk CH, Neumeier S, Stone HJ, et al. Mechanical properties and lattice misfit of γ/γ′ strengthened Co-base superalloys in the Co–W–Al–Ti quaternary system. Intermetallics. 2014;55:28–39.
  • Gu YF, Fukuda T, Cui C, et al. Comparison of mechanical properties of TMW alloys, new generation of cast-and-wrought superalloys for disk applications. Metall Mater Trans A. 2009;40(13):3047–3050.
  • Cui CY, Gu YF, Ping DH, et al. Microstructural evolution and mechanical properties of a Ni-based superalloy, TMW-4. Metall Mater Trans A. 2009;40(2):282–291.
  • Gu Y, Harada H, Cui C, et al. New Ni–Co-base disk superalloys with higher strength and creep resistance. Scr Mater. 2006;55(9):815–818.
  • Fang H, Chen R, Chen X, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys. Intermetallics. 2019;104:43–51.
  • Fang H, Chen R, Yang Y, et al. Role of graphite on microstructural evolution and mechanical properties of ternary TiAl alloy prepared by arc melting method. Mater Des. 2018;156:300–310.
  • Li D, Wang B, Luo L, et al. The interface structure and its impact on the mechanical behavior of TiAl/Ti2AlNb laminated composites. Mater Sci Eng A. 2021;827:1–13.
  • Ma R, Liu Z, Wang W, et al. Microstructures and mechanical properties of Ti6Al4V-Ti48Al2Cr2Nb alloys fabricated by laser melting deposition of powder mixtures. Mater Charact. 2020;164:1–9.
  • Imayev V, Oleneva T, Imayev R, et al. Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2-Ti3Al based alloys subjected to different treatments. Intermetallics. 2012;26:91–97.
  • Li D, Wang B, Luo L, et al. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites. J Mater Sci Technol. 2022;109:228–244.
  • Niu HZ, Chen YY, Kong FT, et al. Microstructure evolution, hot deformation behavior and mechanical properties of Ti-43Al-6Nb-1B alloy. Intermetallics. 2012;31:249–256.
  • Cui N, Kong F, Wang X, et al. Microstructural evolution, hot workability, and mechanical properties of Ti–43Al–2Cr–2Mn–0.2Y alloy. Mater Des. 2016;89:1020–1027.
  • Zhang Y, Wang X, Kong F, et al. Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures. J Alloys Compd. 2019;777:795–805.
  • Li H, Long Y, Liang X, et al. Effects of multiaxial forging on microstructure and high temperature mechanical properties of powder metallurgy Ti-45Al-7Nb-0.3W alloy. Intermetallics. 2020;116:1–7.
  • Abe E, Kajiwara S, Kumagai T, et al. High-resolution electron microscopy of twin interfaces in massively transformed γ-TiAl. Philos Mag A. 1997;75(4):975–991.
  • Hsiung TGNLM, Choi BW, Wadsworth J. Interfacial dislocations and deformation twinning in fully lamellar TiAl. Mater Sci Eng A. 2002;329-331:637–643.
  • Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:1–14.
  • Wang M, Huang MX. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate. Acta Mater. 2020;188:551–559.