1,006
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Ultrahigh strength and toughness in W-Y2O3 alloy with bimodal and lamellar structures

, , , , &
Pages 439-445 | Received 28 Nov 2022, Published online: 21 Feb 2023

References

  • Li Z, Chen YB, Wei SZ, et al. Flow behavior and processing map for hot deformation of W-1.5ZrO2 alloy. J Alloy Compd. 2019;802:118–128. doi:10.1016/j.jallcom.2019.06.179.
  • Yu M, Wang K, Zan X, et al. Hardness loss and microstructure evolution of 90% hot-rolled pure tungsten at 1200–1350°C. Fusion Eng Des. 2017;125:531–536. doi:10.1016/j.fusengdes.2017.05.072.
  • Huang L, Jiang L, Topping TD, et al. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure. Acta Mater. 2017;122:19–31. doi:10.1016/j.actamat.2016.09.034.
  • Richter A, Anwand W, Chen C-L, et al. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation. J Nucl Mater. 2017;494:294–302. doi:10.1016/j.jnucmat.2017.07.039.
  • Lee KH, Cha SI, Ryu HJ, et al. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy. Mater Sci Eng A. 2007;458(1-2):323–329. doi:10.1016/j.msea.2007.01.118.
  • Nogami S, Hasegawa A, Fukuda M, et al. Tungsten modified by potassium doping and rhenium addition for fusion reactor applications. Fusion Eng Des. 2020;152:114214. doi:10.1016/j.fusengdes.2019.111445.
  • Xie ZM, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure. Mater Design. 2016;107:144–152. doi:10.1016/j.matdes.2016.06.012.
  • Dong Z, Ma ZQ, Yu LM, et al. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor. Nat Commun. 2021;12(1):5052. doi:10.1038/s41467-021-25283-2.
  • Hu WQ, Dong Z, Yu LM, et al. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation. J Mater Sci Technol. 2020;36:84–90. doi:10.1016/j.jmst.2019.08.010.
  • Dong Z, Ma ZQ, Liu YC. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Mater. 2021;220:117309. doi:10.1016/j.actamat.2021.117309.
  • Miao S, Xie ZM, Zeng LF, et al. Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process. Nucl Mater Energy. 2017;13:12–20. doi:10.1016/j.nme.2017.09.002.
  • Dong Z, Liu N, Hu WQ, et al. Controlled synthesis of high-quality W-Y2O3 composite powder precursor by ascertaining the synthesis mechanism behind the wet chemical method. J Mater Sci Technol. 2020;36:118–127. doi:10.1016/j.jmst.2019.05.067.
  • Xie ZM, Liu R, Miao S, et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3. J Nucl Mater. 2015;464:193–199. doi:10.1016/j.jnucmat.2015.04.050.
  • Liu G, Zhang GJ, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater. 2013;12(4):344–350. doi:10.1038/NMAT3544.
  • Lian YY, Liu X, Feng F, et al. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging. Phys Scripta. 2017;T170:014044. doi:10.1088/1402-4896/aa8f2d.
  • Tan XY, Luo LM, Chen HY, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation. Sci Rep. 2015;5:12755. doi:10.1038/srep12755.
  • Bonk S, Hoffmann J, Hoffmann A, et al. Cold rolled tungsten (W) plates and foils: Evolution of the tensile properties and their indication towards deformation mechanisms. Int J Refract Met Hard Mater. 2018;70:124–133. doi:10.1016/j.ijrmhm.2017.09.007.
  • Zhao ZH, Yao G, Luo LM, et al. Tensile fracture behavior and texture evolution of a hot-rolled W-Y2(Zr)O3 alloy. J Nucl Mater. 2021;554:153080. doi:10.1016/j.jnucmat.2021.153080.
  • Xie ZM, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature. Sci Rep. 2015;5:16014. doi:10.1038/srep16014.
  • Miao S, Xie ZM, Zhang T, et al. Mechanical properties and thermal stability of rolled W-0.5wt% TiC alloys. Mater Sci Eng A. 2016;671:87–95. doi:10.1016/j.msea.2016.06.049.
  • Xie ZM, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices. J Nucl Mater. 2017;496:41–53. doi:10.1016/j.jnucmat.2017.09.022.
  • Liu R, Xie ZM, Yang JF, et al. Recent progress on the R&D of W-ZrC alloys for plasma facing components in fusion devices. Nucl Mater Energy. 2018;16:191–206. doi:10.1016/j.nme.2018.07.002.
  • Yin C, Terentyev D, Pardoen T, et al. Tensile properties of baseline and advanced tungsten grades for fusion applications. Int J Refract Met Hard Mater. 2018;75:153–162. doi:10.1016/j.ijrmhm.2018.04.003.
  • Miao S, Xie ZM, Yang XD, et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5wt.% TaC alloys. Int J Refract Met Hard Mater. 2016;56:8–17. doi:10.1016/j.ijrmhm.2015.12.004.
  • Shen TL, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures. J Nucl Mater. 2016;468:348–354. doi:10.1016/j.jnucmat.2015.09.057.
  • Xie XF, Xie ZM, Liu R, et al. Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten. Acta Mater. 2022;228:117765. doi:10.1016/j.actamat.2022.117765.
  • Deng HW, Xie ZM, Wang YK, et al. Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology. Mater Sci Eng A. 2018;715:117–125. doi:10.1016/j.msea.2017.12.112.
  • Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51(19):5743–5774. doi:10.1016/j.actamat.2003.08.032.
  • Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM. 2006;58(4):49–53. doi:10.1007/s11837-006-0215-5.
  • Feng F, Wang JB, Lian YY, et al. Achieving low-temperature tensile ductility in a swaged W-Y2O3 alloy. Mater Sci Eng A. 2022;857:144109. doi:10.1016/j.msea.2022.144109.
  • Hansen N. Boundary strengthening in undeformed and deformed polycrystals. Mater Sci Eng A. 2005;409(1-2):39–45. doi:10.1016/j.msea.2005.04.061.
  • Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination. Science. 2020;368:1347–1352. doi:10.1126/science.aba9413.
  • Huang MS, Li ZH, Tong J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature. Int J Plasticity. 2014;61:112–127. doi:10.1016/j.ijplas.2014.06.002.
  • Ayas C, van Dommelen JAW, Deshpande VS. Climb-enabled discrete dislocation plasticity. J Mech Phys Solids. 2014;62:113–136. doi:10.1016/j.jmps.2013.09.019.
  • Wang CJ, Huang H, Wei SZ, et al. Strengthening mechanism and effect of Al2O3 particle on high-temperature tensile properties and microstructure evolution of W-Al2O3 alloys. Mater Sci Eng A. 2022;835:142678. doi:10.1016/j.msea.2022.142678.
  • Liu N, Dong Z, Ma Z, et al. Eliminating bimodal structures of W-Y2O3 composite nanopowders synthesized by wet chemical method via controlling reaction conditions. J Alloy Compd. 2019;774:122–128. doi:10.1016/j.jallcom.2018.09.310.