1,940
Views
0
CrossRef citations to date
0
Altmetric
Brief Overview

Unlocking the full energy densities of carbon-based supercapacitors

, ORCID Icon &
Pages 517-546 | Received 03 Jan 2023, Published online: 07 Mar 2023

References

  • Chen P, Wang C, Wang T. Review and prospects for room-temperature sodium-sulfur batteries. Mater Res Lett. 2022;10(11):691–719.
  • Mo F, Cui M, He N, et al. Recent progress and perspectives on advanced flexible Zn-based batteries with hydrogel electrolytes. Mater Res Lett. 2022;10(8):501–520.
  • Huang C, Wang D, Zhang W, et al. Substitution-triggered broken symmetry of cobalt tungstate boosts redox kinetics in pseudocapacitive storage. Cell Rep Phys Sci. 2022;3(11):101115.
  • Zhao Z, Zhang W, Liu M, et al. Switching optimally balanced Fe–N interaction enables extremely stable energy storage. Energy Environ Mater. 2022. doi:10.1002/eem2.12342.
  • Zhou X, Qiao S, Yue N, et al. Soft X-ray emission spectroscopy finds plenty of room in exploring lithium-ion batteries. Mater Res Lett. 2022;11(4):239–249.
  • Fan E, Li L, Wang Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020–7063.
  • Wang L, Menakath A, Han F, et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat Chem. 2019;11(9):789–796.
  • Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev. 2018;118(23):11433–11456.
  • Ghosh S, Barg S, Jeong SM, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater. 2020;10(32):2001239.1–2001239.44.
  • Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19–29.
  • Lin Z, Liu T, Ai X, et al. Aligning academia and industry for unified battery performance metrics. Nat Commun. 2018;9(1):5262.
  • Yang Z, Zhang J, Kintner-Meyer MC, et al. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577–3613.
  • Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev. 2015;44(21):7484–7539.
  • Deng T, Zhang W, Arcelus O, et al. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun. 2017;8:15194.
  • Jayaseelan SS, Radhakrishnan S, Saravanakumar B, et al. Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes. Colloids Surf A. 2018;538:451–459.
  • Zheng SS, Li Q, Xue HG, et al. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev. 2020;7(2):305–314.
  • Yu ZN, Tetard L, Zhai L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci. 2015;8(3):702–730.
  • Chen XL, Paul R, Dai LM. Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev. 2017;4(3):453–489.
  • Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res. 2013;46(5):1094–103.
  • Zhang S, Zheng M, Tang Y, et al. Understanding synthesis–structure–performance correlations of nanoarchitectured activated carbons for electrochemical applications and carbon capture. Adv Funct Mater. 2022;32(40):2204714.
  • Cui DD, Li HJ, Li MJ, et al. Boron-doped graphene directly grown on boron-doped diamond for high-voltage aqueous supercapacitors. ACS Appl Energy Mater. 2019;2(2):1526–1536.
  • Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016;45(21):5925–5950.
  • Kumar Y, Rawal S, Joshi B, et al. Background, fundamental understanding and progress in electrochemical capacitors. J Solid State Electrochem. 2019;23(3):667–692.
  • Poonam, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices. J Energy Storage. 2019;21:801–825.
  • Peng C, Zhang SW, Jewell D, et al. Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci Mater Int. 2008;18(7):777–788.
  • Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors. Nature Energy. 2016;1(6):16070.
  • Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta. 2000;45(15):2483–2498.
  • Iro ZS. A brief review on electrode materials for supercapacitor. Int J Electrochem Sci. 2016;11:10628–10643.
  • Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41(2):797–828.
  • Noori A, El-Kady MF, Rahmanifar MS, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev. 2019;48(5):1272–1341.
  • Yu X, Yun S, Yeon JS, et al. Emergent pseudocapacitance of 2D nanomaterials. Adv Energy Mater. 2018;8(13):1702930.
  • Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828–4850.
  • Dong T, Yi W, Deng T, et al. Diffusionless-like transformation unlocks pseudocapacitance with bulk utilization: reinventing Fe2O3 in alkaline electrolyte. Energy Environ Mater. 2023;6(1):e12262.
  • Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597–1614.
  • Szabó S. Underpotential deposition of metals on foreign metal substrates. Int Rev Phys Chem. 1991;10(2):207–248.
  • Herrero E, Buller LJ, Abruna HD. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev. 2001;101(7):1897–1930.
  • Liu J, Wang J, Xu C, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci. 2018;5(1):1700322.
  • Jiang YQ, Liu JP. Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater. 2019;2(1):30–37.
  • Zhu Y, Peng L, Chen D, et al. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2016;16(1):742–747.
  • Lu X, Wang G, Zhai T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012;12(3):1690–1696.
  • Acerce M, Voiry D, Chhowalla M. Metallic 1 T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol. 2015;10(4):313–318.
  • Kong L, Zhang C, Zhang S, et al. High-power and high-energy asymmetric supercapacitors based on Li+-intercalation into a T-Nb2O5/graphene pseudocapacitive electrode. J Mater Chem A. 2014;2(42):17962–17970.
  • Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):1–17.
  • Bai Y, Liu C, Chen T, et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed. 2021;60(48):25318–25322.
  • Zhu X. Recent advances of transition metal oxides and chalcogenides in pseudo-capacitors and hybrid capacitors: a review of structures, synthetic strategies, and mechanism studies. J Energy Storage. 2022;49:104148.
  • Wang HW, Xu DM, Qiu RY, et al. Aligned arrays of Na2Ti3O7 nanobelts and nanowires on carbon nanofiber as high-rate and long-cycling anodes for sodium-ion hybrid capacitors. Small Struct. 2021;2:2000073.
  • Lee SW, Gallant BM, Byon HR, et al. Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ Sci. 2011;4(6):1972–1985.
  • Zhang L, Du WY, Nautiyal A, et al. Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater. 2018;61(3):303–352.
  • Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources. 2006;157(1):11–27.
  • Wang YF, Zhang L, Hou HQ, et al. Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci. 2021;56(1):173–200.
  • Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520–2531.
  • Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors. Nat Energy. 2016;1(6):16070.
  • Shao H, Wu YC, Lin Z, et al. Nanoporous carbon for electrochemical capacitive energy storage. Chem Soc Rev. 2020;49(10):3005–3039.
  • Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006;313(5794):1760–1763.
  • Chmiola J, Largeot C, Taberna PL, et al. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chem Int Ed. 2008;47(18):3392–3395.
  • Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science. 2013;341(6145):534–537.
  • Hurilechaoketu, Wang J, Cui CJ, et al. Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors. Carbon. 2019;154:1–6.
  • Gu WT, Yushin G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ. 2014;3(5):424–473.
  • Sun JT, Niu J, Liu MY, et al. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl Surf Sci. 2018;427:807–813.
  • Yang BB, Zhang DY, She WN, et al. Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage. J Power Sources. 2021;492:229666.
  • Xu H, Wu CK, Wei XJ, et al. Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J Mater Chem A. 2018;6(31):15340–15347.
  • Yao L, Wu Q, Zhang P, et al. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv Mater. 2018;30(11):1706054.
  • Zheng Y, Deng T, Zhang W, et al. Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance. J Energy Chem. 2020;47:210–216.
  • Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon. 2005;43(6):1303–1310.
  • Hulicova-Jurcakova D, Kodama M, Shiraishi S, et al. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater. 2009;19(11):1800–1809.
  • Miao L, Song ZY, Zhu DZ, et al. Recent advances in carbon-based supercapacitors. Mater Adv. 2020;1(5):945–966.
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9–10):1051–1069.
  • Liu TY, Zhang F, Song Y, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A. 2017;5(34):17705–17733.
  • Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, et al. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev. 2017;46(2):389–414.
  • Benzigar MR, Talapaneni SN, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev. 2018;47(8):2680–2721.
  • Yan RY, Antonietti M, Oschatz M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv Energy Mater. 2018;8(18):1800026.
  • Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Adv Mater. 2012;24(33):4473–4498.
  • Yu L, Wu HB, Lou XW. Self-templated formation of hollow structures for electrochemical energy applications. Acc Chem Res. 2017;50(2):293–301.
  • Liu TY, Liu GL. Block copolymer-based porous carbons for supercapacitors. J Mater Chem A. 2019;7(41):23476–23488.
  • Malgras V, Tang J, Wang J, et al. Fabrication of nanoporous carbon materials with hard- and soft-templating approaches: a review. J Nanosci Nanotechnol. 2019;19(7):3673–3685.
  • Li JM, Jiang QM, Wei LS, et al. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density. J Mater Chem A. 2020;8(3):1469–1479.
  • Li J, Wang N, Tian JR, et al. Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V. Adv Funct Mater. 2018;28(51):1806153.
  • Cheng J, Liu YC, Zhang XX, et al. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries. Chem Eng J. 2021;419(1):129649.
  • Du J, Liu L, Hu ZP, et al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy. Adv Funct Mater. 2018;28(33):1802332.
  • Li W, Liu J, Zhao DY. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater. 2016;1:16023.
  • Gu D, Schuth F. Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev. 2014;43(1):313–44.
  • Xie XY, He XJ, Zhang HF, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem Eng J. 2018;350:49–56.
  • Li WZ, Li BY, Shen M, et al. Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chem Eng J. 2020;384:123309.
  • Xi X, Wu D, Han L, et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores. ACS Nano. 2018;12(6):5436–5444.
  • Li W, Deng Y, Wu Z, et al. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J Am Chem Soc. 2011;133(40):15830–15833.
  • Liu C, Bai Y, Li W, et al. In situ growth of three-dimensional mxene/metal-organic framework composites for high-performance supercapacitors. Angew Chem Int Ed. 2022;61(11):e202116282.
  • Fei X, Li W, Shao Z, et al. Protein biomineralized nanoporous inorganic mesocrystals with tunable hierarchical nanostructures. J Am Chem Soc. 2014;136(44):15781–15786.
  • Batten SR, Champness NR, Chen X-M, et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem. 2013;85(8):1715–1724.
  • Jayaramulu K, Dubal DP, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv Mater. 2018;30(15):e1705789.
  • Deng XY, Li JJ, Zhu S, et al. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater. 2019;23:491–498.
  • Dou Q, Park HS. Perspective on high-energy carbon-based supercapacitors. Energy Environ Mater. 2020;3(3):286–305.
  • Puziy AM, Poddubnaya OI, Gawdzik B, et al. Phosphorus-containing carbons: preparation, properties and utilization. Carbon. 2020;157:796–846.
  • Qi D, Lv F, Wei T, et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res Energy. 2022;1:e9120022.
  • Feng X, Bai Y, Liu MQ, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ Sci. 2021;14(4):2036–2089.
  • Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. 2013;6(10):2839–2855.
  • Sun CL, Wang HW, Hayashi M, et al. Atomic-scale deformation in N-doped carbon nanotubes. J Am Chem Soc. 2006;128(26):8368–8369.
  • Wang X, Li X, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–771.
  • Ma FW, Zhao H, Sun LP, et al. A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. J Mater Chem. 2012;22(27):13464–13468.
  • Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater. 2012;24(41):5610–5616.
  • Yang XQ, Wu DC, Chen XM, et al. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C. 2010;114(18):8581–8586.
  • Gavrilov N, Pasti IA, Vujkovic M, et al. High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon. 2012;50(10):3915–3927.
  • Zhang S, Sui L, Dong H, et al. High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl Mater Interfaces. 2018;10(15):12983–12991.
  • Lee JH, Park N, Kim BG, et al. Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano. 2013;7(10):9366–9374.
  • Yang J, Jo MR, Kang M, et al. Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors. Carbon. 2014;73:106–113.
  • Yang Y, Liu YX, Li Y, et al. Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. J Mater Chem A. 2020;8(33):17257–17265.
  • Sevilla M, Ferrero GA, Diez N, et al. One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon. 2018;131:193–200.
  • Su HP, Lian C, Gallegos A, et al. Microscopic insights into the Faradaic reaction effects on the electric double layers. Chem Eng Sci. 2020;215:115452.
  • He YT, Zhang YH, Li XF, et al. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim Acta. 2018;282:618–625.
  • Wang DW, Li F, Chen ZG, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater. 2008;20(22):7195–7200.
  • Niu LY, Li ZP, Hong W, et al. Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochim Acta. 2013;108:666–673.
  • Bo X, Guo L. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys Chem Chem Phys. 2013;15(7):2459–2465.
  • Sun F, Qu ZB, Gao JH, et al. In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv Funct Mater. 2018;28(41):1804190.
  • Li S, Wang Z, Jiang H, et al. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem Commun. 2016;52(73):10988–10991.
  • Yu X, Kim HJ, Hong JY, et al. Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures. Nano Energy. 2015;15:576–586.
  • Wen Y, Wang B, Huang C, et al. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem Eur J. 2015;21(1):80–85.
  • Bi Z, Huo L, Kong Q, et al. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface. ACS Appl Mater Interfaces. 2019;11(12):11421–11430.
  • Patiño J, López-Salas N, Gutiérrez MC, et al. Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J Mater Chem A. 2016;4(4):1251–1263.
  • Wang F, Cheong JY, He Q, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem Eng J. 2021;414:128767.
  • Zhao GY, Yu DF, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries. Nano Energy. 2020;67:104219.
  • Li DH, Chang GJ, Zong L, et al. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater. 2019;17:22–30.
  • Sevilla M, Diez N, Ferrero GA, et al. Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Mater. 2019;18:356–365.
  • Fulvio PF, Lee JS, Mayes RT, et al. Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Phys Chem Chem Phys. 2011;13(30):13486–13491.
  • Hulicova-Jurcakova D, Seredych M, Lu GQ, et al. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. Carbon. 2009;47(6):1576–1584.
  • Lin T, Chen IW, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science. 2015;350(6267):1508–1513.
  • Panja T, Bhattacharjya D, Yu JS. Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. J Mater Chem A. 2015;3(35):18001–18009.
  • Zhang XS, Yan PT, Zhang RJ, et al. A novel approach of binary doping sulfur and nitrogen into graphene layers for enhancing electrochemical performances of supercapacitors. J Mater Chem A. 2016;4(48):19053–19059.
  • Lu Y, Liang JN, Deng SF, et al. Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy. 2019;65:103993.
  • He HN, Huang D, Tang YG, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy. 2019;57:728–736.
  • Cui C, Gao Y, Li J, et al. Origins of boosted charge storage on heteroatom-doped carbons. Angew Chem Int Ed. 2020;59(20):7928–7933.
  • Zhao GY, Chen C, Yu DF, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy. 2018;47:547–555.
  • Wang T, Sun Y, Zhang L, et al. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Adv Mater. 2019;31(16):e1807876.
  • Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy. 2016;27:482–491.
  • Wu P, Wang K, Yu S, et al. Preparation of dual-doped N/P two-dimensional porous carbon nanosheets for high-performance alkaline supercapacitors. ACS Appl Energy Mater. 2022;5(1):137–148.
  • Liu B, Liu YJ, Chen HB, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources. 2017;341:309–317.
  • Xue D, Zhu D, Duan H, et al. Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chem Commun. 2019;55(75):11219–11222.
  • Wang JG, Liu HZ, Zhang XY, et al. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. J Mater Chem A. 2018;6(36):17653–17661.
  • Wu XL, Jiang LL, Long CL, et al. From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy. 2015;13:527–536.
  • Yang L, Wu D, Wang T, et al. B/N-codoped carbon nanosheets derived from the self-assembly of chitosan-amino acid gels for greatly improved supercapacitor performances. ACS Appl Mater Interfaces. 2020;12(16):18692–18704.
  • Miao L, Zhu DZ, Liu MX, et al. N, S co-doped hierarchical porous carbon rods derived from protic salt: facile synthesis for high energy density supercapacitors. Electrochim Acta. 2018;274:378–388.
  • Yi JL, Yu XH, Zhang RL, et al. Chitosan-based synthesis of O, N, and P codoped hierarchical porous carbon as electrode materials for supercapacitors. Energy Fuels. 2021;35(24):20339–20348.
  • Song Z, Duan H, Li L, et al. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem Eng J. 2019;372:1216–1225.
  • Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A. 2017;5(25):12653–12672.
  • Tie D, Huang SF, Wang J, et al. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 2019;21:22–40.
  • Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun. 2016;7(1):12647.
  • Li H, Li Z, Wu Z, et al. Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors. J Colloid Interface Sci. 2019;549:105–113.
  • Asim S, Javed MS, Hussain S, et al. Ruo2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries. Electrochim Acta. 2019;326:135009.
  • Liu T, Jiang CJ, You W, et al. Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A. 2017;5(18):8635–8643.
  • Liu T, Zhou Z, Guo Y, et al. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat Commun. 2019;10(1):675.
  • Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources. 2011;196(1):1–12.
  • Du PC, Wei WL, Liu D, et al. Fabrication of hierarchical carbon layer encapsulated polyaniline core-shell structure nanotubes and application in supercapacitors. Chem Eng J. 2018;335:373–383.
  • Zhuo H, Hu Y, Chen Z, et al. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohydr Polym. 2019;215:322–329.
  • Alabadi A, Razzaque S, Dong ZH, et al. Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. J Power Sources. 2016;306:241–247.
  • Zhang W, Jin XZ, Chai H, et al. 3D hybrids of interconnected porous carbon nanosheets/vertically aligned polyaniline nanowires for high-performance supercapacitors. Adv Mater Interfaces. 2018;5(11):1800106.
  • Balducci A. Electrolytes for high voltage electrochemical double layer capacitors: a perspective article. J Power Sources. 2016;326:534–540.
  • Pal B, Krishnan SG, Vijayan BL, et al. In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications. J Electroanal Chem. 2018;817:217–225.
  • Galiński M, Lewandowski A, Stępniak IJEA. Ionic liquids as electrolytes. Electrochim Acta. 2006;51(26):5567–5580.
  • Kim H, Hong J, Park KY, et al. Aqueous rechargeable Li and Na ion batteries. Chem Rev. 2014;114(23):11788–11827.
  • Yu AP, Chen ZW, Maric R, et al. Electrochemical supercapacitors for energy storage and delivery: advanced materials, technologies and applications. Applied Energy. 2015;153:1–2.
  • Wan F, Zhu JC, Huang S, et al. High-voltage electrolytes for aqueous energy storage devices. Batteries Supercaps. 2020;3(4):323–330.
  • Evanko B, Boettcher SW, Yoo SJ, et al. Redox-enhanced electrochemical capacitors: status, opportunity, and best practices for performance evaluation. ACS Energy Lett. 2017;2(11):2581–2590.
  • Roldán S, Blanco C, Granda M, et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem Int Ed. 2011;123(7):1737–1739.
  • Roldán S, Granda M, Menéndez R, et al. Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim Acta. 2012;83:241–246.
  • Senthilkumar ST, Selvan RK, Melo JS. Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A. 2013;1(40):12386–12394.
  • Akinwolemiwa B, Peng C, Chen GZ. Redox electrolytes in supercapacitors. J Electrochem Soc. 2015;162(5):A5054–A5059.
  • Yan L, Li D, Yan T, et al. Confining redox electrolytes in functionalized porous carbon with improved energy density for supercapacitors. ACS Appl Mater Interfaces. 2018;10(49):42494–42502.
  • Evanko B, Yoo SJ, Chun SE, et al. Efficient charge storage in dual-redox electrochemical capacitors through reversible counterion-induced solid complexation. J Am Chem Soc. 2016;138(30):9373–9376.
  • Xu D, Sun XN, Hu W, et al. Carbon nanosheets-based supercapacitors: design of dual redox additives of 1, 4-dihydroxyanthraquinone and hydroquinone for improved performance. J Power Sources. 2017;357:107–116.
  • Yoo SJ, Evanko B, Wang X, et al. Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J Am Chem Soc. 2017;139(29):9985–9993.
  • Wang Y, Chang Z, Qian M, et al. Enhanced specific capacitance by a new dual redox-active electrolyte in activated carbon-based supercapacitors. Carbon. 2019;143:300–308.
  • Tian X, Zhu Q, Xu B. ‘Water-in-salt’ electrolytes for supercapacitors: a review. ChemSusChem. 2021;14(12):2501–2515.
  • Suo L, Borodin O, Gao T, et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350(6263):938–943.
  • Suo L, Borodin O, Sun W, et al. Advanced high-voltage aqueous lithium-ion battery enabled by ‘Water-in-Bisalt’ electrolyte. Angew Chem Int Ed. 2016;55(25):7136–7141.
  • Yamada Y, Usui K, Sodeyama K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy. 2016;1(10):16129.
  • Suo LM, Han FD, Fan XL, et al. ‘Water-in-Salt’ electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications. J Mater Chem A. 2016;4(17):6639–6644.
  • Suo L, Oh D, Lin Y, et al. How solid-electrolyte interphase forms in aqueous electrolytes. J Am Chem Soc. 2017;139(51):18670–18680.
  • Dou QY, Lei SL, Wang DW, et al. Safe and high-rate supercapacitors based on an ‘acetonitrile/water in salt’ hybrid electrolyte. Energy Environ Sci. 2018;11(11):3212–3219.
  • Matsumoto K, Hwang J, Kaushik S, et al. Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ Sci. 2019;12(11):3247–3287.
  • Kong C, Qian W, Zheng C, et al. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte. Chem Commun. 2013;49(91):10727–10729.
  • Murayama I, Yoshimoto N, Egashira M, et al. Characteristics of electric double layer capacitors with an ionic liquid electrolyte containing Li ion. Electrochemistry. 2005;73(8):600–602.
  • Matsumoto H, Kageyama H, Miyazaki Y. Effect of ionic additives on the limiting cathodic potential of EMI-based room temperature ionic liquids. Electrochemistry. 2003;71(12):1058–1060.
  • Armand M, Endres F, MacFarlane DR, et al. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8:621–629.
  • Clare B, Sirwardana A, Macfarlane DR. Synthesis, purification and characterization of ionic liquids. Top Curr Chem. 2010;290:1–40.
  • Shi M, Kou S, Yan X. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions. ChemSusChem. 2014;7(11):3053–3062.
  • Demarconnay L, Calvo EG, Timperman L, et al. Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochim Acta. 2013;108:361–368.
  • Timperman L, Skowron P, Boisset A, et al. Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys. 2012;14(22):8199–8207.
  • Timperman L, Béguin F, Frackowiak E, et al. Comparative study of two protic ionic liquids as electrolyte for electrical double-layer capacitors. J Electrochem Soc. 2013;161(3):A228–A238.
  • Dou Q, Liu L, Yang B, et al. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nat Commun. 2017;8(1):2188.
  • Brandt A, Pires J, Anouti M, et al. An investigation about the cycling stability of supercapacitors containing protic ionic liquids as electrolyte components. Electrochim Acta. 2013;108:226–231.
  • Stettner T, Walter FC, Balducci A. Imidazolium-based protic ionic liquids as electrolytes for lithium-ion batteries. Batteries Supercaps. 2019;2(1):55–59.
  • Yuan JY, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update. Prog Polym Sci. 2013;38(7):1009–1036.
  • Shahzad S, Shah A, Kowsari E, et al. Ionic liquids as environmentally benign electrolytes for high-performance supercapacitors. Glob Chall. 2019;3(1):1800023.
  • Handa N, Sugimoto T, Yamagata M, et al. A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor. J Power Sources. 2008;185(2):1585–1588.
  • Li YB, Zhang DY, Zhang YM, et al. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors. J Power Sources. 2020;448:227396.
  • Chen YJ, Liu ZE, Sun L, et al. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. J Power Sources. 2018;390:215–223.
  • Zhang F, Zhang TF, Yang X, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci. 2013;6(5):1623–1632.
  • Kaiser MR, Chou S, Liu HK, et al. Structure-property relationships of organic electrolytes and their effects on Li/S battery performance. Adv Mater. 2017;29(48):1700449.
  • Raza W, Ali FZ, Raza N, et al. Recent advancements in supercapacitor technology. Nano Energy. 2018;52:441–473.
  • McDonough JK, Frolov AI, Presser V, et al. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon. 2012;50(9):3298–3309.
  • Zheng C, Yoshio M, Qi L, et al. A 4 V-electrochemical capacitor using electrode and electrolyte materials free of metals. J Power Sources. 2014;260:19–26.
  • Koh AR, Hwang B, Roh KC, et al. The effect of the ionic size of small quaternary ammonium BF4 salts on electrochemical double layer capacitors. Phys Chem Chem Phys. 2014;16(29):15146–15151.
  • Beguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater. 2014;26(14):2219–2251.
  • Sun ZX, Zheng MT, Hu H, et al. From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage. Chem Eng J. 2018;336:550–561.
  • Sevilla M, Fuertes AB. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano. 2014;8(5):5069–5078.
  • Brandt A, Isken P, Lex-Balducci A, et al. Adiponitrile-based electrochemical double layer capacitor. J Power Sources. 2012;204:213–219.
  • Qian WJ, Sun FX, Xu YH, et al. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci. 2014;7(1):379–386.
  • Yu X, Ruan D, Wu C, et al. Spiro-(1,1′)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. J Power Sources. 2014;265:309–316.
  • Lim E, Kim H, Jo C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano. 2014;8(9):8968–78.
  • Lei Y, Huang ZH, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor. Sci Rep. 2013;3(1):2477.
  • Zhao WD, Zhu Y, Zhang LT, et al. Facile synthesis of three-dimensional porous carbon for high-performance supercapacitors. J Alloys Compd. 2019;787:1–8.
  • Mitravinda T, Anandan S, Sharma CS, et al. Design and development of honeycomb structured nitrogen-rich cork derived nanoporous activated carbon for high-performance supercapacitors. J Energy Storage. 2021;34:102017.
  • Wang DW, Liu SJ, Jiao L, et al. A smart bottom-up strategy for the fabrication of porous carbon nanosheets containing rGO for high-rate supercapacitors in organic electrolyte. Electrochim Acta. 2017;252:109–118.
  • Poochai C, Sriprachuabwong C, Srisamrarn N, et al. High performance coin-cell and pouch-cell supercapacitors based on nitrogen-doped reduced graphene oxide electrodes with phenylenediamine-mediated organic electrolyte. Appl Surf Sci. 2019;489:989–1001.
  • Zou ZM, Liu T, Jiang CH. Highly mesoporous carbon flakes derived from a tubular biomass for high power electrochemical energy storage in organic electrolyte. Mater Chem Phys. 2019;223:16–23.
  • Purkait T, Singh G, Singh M, et al. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep. 2017;7(1):15239.