1,576
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons

, , , , , , , , & show all
Pages 547-555 | Received 06 Dec 2022, Published online: 11 Mar 2023

References

  • Hufnagel TC, Schuh CA, Falk ML. Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater. 2016;109:375–393.
  • Leamy H, Wang T, Chen H. Plastic flow and fracture of metallic glass. Metall Mater Trans B. 1972;3(3):699–708.
  • Egami T, Iwashita T, Dmowski W. Mechanical properties of metallic glasses. Metals (Basel). 2013;3(1):77–113.
  • Greer A, Cheng Y, Ma E. Shear bands in metallic glasses. Mater Sci Eng: R: Rep. 2013;74(4):71–132.
  • Schroers J, Johnson WL. Ductile bulk metallic glass. Phys Rev Lett 2004;93(25):255506.
  • Yao K, Ruan F, Yang Y, et al. Superductile bulk metallic glass. Appl Phys Lett. 2006;88(12):122106.
  • Liu YH, Wang G, Wang RJ, et al. Super plastic bulk metallic glasses at room temperature. Science. 2007;315(5817):1385–1388.
  • Demetriou MD, Launey ME, Garrett G, et al. A damage-tolerant glass. Nat Mater. 2011;10(2):123–128.
  • Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977;25(4):407–415.
  • Schall P, Weitz DA, Spaepen F. Structural rearrangements that govern flow in colloidal glasses. Science. 2007;318(5858):1895–1899.
  • Argon A. Plastic deformation in metallic glasses. Acta Metall. 1979;27(1):47–58.
  • Argon A. Strain avalanches in plasticity. Philos Mag. 2013;93(28-30):3795–3808.
  • Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Physical Review E. 1998;57(6):7192.
  • Johnson W, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/T g) 2/3 temperature dependence. Phys Rev Lett. 2005;95(19):195501.
  • Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Prog Mater Sci. 2019;106:100561.
  • Jug G, Loidl A, Tanaka H. On the structural heterogeneity of supercooled liquids and glasses (a). Europhys Lett. 2021;133(5):56002.
  • Dmowski W, Iwashita T, Chuang C-P, et al. Elastic heterogeneity in metallic glasses. Phys Rev Lett 2010;105(20):205502.
  • Ye J, Lu J, Liu C, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater. 2010;9(8):619–623.
  • Wagner H, Bedorf D, Kuechemann S, et al. Local elastic properties of a metallic glass. Nat Mater. 2011;10(6):439–442.
  • Liu Y, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett 2011;106(12):125504.
  • Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass. Nat Mater. 2011;10(1):28–33.
  • Ma D, Stoica AD, Wang X-L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater. 2009;8(1):30–34.
  • Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature. 2021;592(7852):60–64.
  • Lan S, Zhu L, Wu Z, et al. A medium-range structure motif linking amorphous and crystalline states. Nat Mater. 2021;20(10):1347–1352.
  • So KP, Stapelberg M, Zhou YR, et al. Observation of dynamical transformation plasticity in metallic nanocomposites through a precompiled machine-learning algorithm. Mater Res Lett. 2022;10(1):14–20.
  • Wang Z, Sun B, Bai H, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun. 2014;5(1):1–7.
  • Xue R, Zhao L, Shi C, et al. Enhanced kinetic stability of a bulk metallic glass by high pressure. Appl Phys Lett. 2016;109(22):221904.
  • Wang Z, Wang W-H. Flow units as dynamic defects in metallic glassy materials. Natl Sci Rev. 2019;6(2):304–323.
  • Liu S, Wang Z, Peng H, et al. The activation energy and volume of flow units of metallic glasses. Scr Mater. 2012;67(1):9–12.
  • Luo P, Lu Z, Li Y, et al. Probing the evolution of slow flow dynamics in metallic glasses. Physical Review B. 2016;93(10):104204.
  • Yu H, Shen X, Wang Z, et al. Tensile plasticity in metallic glasses with pronounced β relaxations. Phys Rev Lett. 2012;108(1):015504.
  • Wang Z, Wen P, Huo L, et al. Signature of viscous flow units in apparent elastic regime of metallic glasses. Appl Phys Lett. 2012;101(12):121906.
  • Zhang Z, Ding J, Ma E. Intrinsic shear transformations in metallic glasses. arXiv preprint arXiv:220812661. 2022.
  • Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nat Commun. 2018;9(1):1–7.
  • Fan Y, Iwashita T, Egami T. How thermally activated deformation starts in metallic glass. Nat Commun. 2014;5(1):1–7.
  • Ding J, Patinet S, Falk ML, et al. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci USA. 2014;111(39):14052–14056.
  • Richard D, Kapteijns G, Giannini JA, et al. Simple and broadly applicable definition of shear transformation zones. Phys Rev Lett 2021;126(1):015501.
  • Lu Z, Jiao W, Wang W, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett 2014;113(4):045501.
  • Qiao J, Casalini R, Pelletier J-M. Main (α) relaxation and excess wing in Zr50Cu40Al10 bulk metallic glass investigated by mechanical spectroscopy. J Non-Cryst Solids. 2015;407:106–109.
  • Wang X-L, Almer J, Liu C, et al. In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys Rev Lett. 2003;91(26):265501.
  • Beaucage G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr. 1995;28(6):717–728.
  • Luo P, Lu Z, Zhu Z, et al. Prominent β-relaxations in yttrium based metallic glasses. Appl Phys Lett. 2015;106(3):031907.
  • Guinier A. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Courier Corporation; 1994.
  • Beaucage G. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr. 1996;29(2):134–146.
  • Elliott SR. Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys Rev Lett 1991;67(6):711–714.
  • Lan S, Blodgett M, Kelton KF, et al. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Appl Phys Lett. 2016;108(21):211907.
  • Lan S, Ren Y, Wei XY, et al. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nat Commun. 2017;8(1):14679.
  • Dong W, Ge J, Ke Y, et al. In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses. J Alloys Compd. 2020;819:153049.
  • Xue RJ, Wang DP, Zhu ZG, et al. Characterization of flow units in metallic glass through density variation. J Appl Phys. 2013;114(12):123514.
  • Hodge IM. Physical aging in polymer glasses. Science. 1995;267(5206):1945–1947.
  • Tsai P, Kranjc K, Flores KM. Hierarchical heterogeneity and an elastic microstructure observed in a metallic glass alloy. Acta Mater. 2017;139:11–20.
  • Cao P, Short MP, Yip S. Understanding the mechanisms of amorphous creep through molecular simulation. Proc Natl Acad Sci USA. 2017;114(52):13631–13636.
  • Cao CR, Huang KQ, Shi JA, et al. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat Commun. 2019;10(1):1966.
  • Brüning R, Ström-Olsen JO. Atomic displacements during structural relaxation in a metallic glass. Physical Review B. 1990;41(5):2678–2683.
  • Deng D, Argon AS, Yip S. Kinetics of structural relaxations in a two-dimensional model atomic glass III. Philos Trans R Soc London Ser A. 1989;329(1608):595–612.
  • Ruta B, Baldi G, Monaco G, et al. Compressed correlation functions and fast aging dynamics in metallic glasses. J Chem Phys. 2013;138(5):0054508.
  • Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015;524(7564):200–203.
  • Meng YH, Zhang SY, Zhou WH, et al. Rejuvenation by enthalpy relaxation in metallic glasses. Acta Mater. 2022;241:118376.
  • Krausser J, Samwer KH, Zaccone A. Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc Natl Acad Sci USA. 2015;112(45):13762–13767.