3,162
Views
12
CrossRef citations to date
0
Altmetric
Report

Dislocation array reflection enhances strain hardening of a dual-phase heterostructured high-entropy alloy

, , , , , , , , & show all
Pages 638-647 | Received 04 Oct 2022, Published online: 09 May 2023

References

  • Han SZ, Choi EA, Lim SH, et al. Alloy design strategies to increase strength and its trade-offs together. Prog Mater Sci. 2021;117:100720.
  • Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature. 2019;575:64–74.
  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29.
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mate Sci. 2006;51(4):427–556.
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57(1):1–62.
  • Ovid’ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Chen XF, Wang Q, Cheng ZY, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature. 2021;592:712–716.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Li ZM, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534:227–230.
  • Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun. 2016;7:10602.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9(1):1–31.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323–331.
  • Yang MX, Yan DS, Yuan FP, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci USA. 2018;115(28):7224–7229.
  • Du XH, Li WP, Chang HT, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nat Commun. 2020;11:2390.
  • Ma E, Wu XL. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nat Commun. 2019;10:5623.
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201.
  • Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: some current trends. Mater Res Lett. 2021;9(10):399–421.
  • Huang GW, Li XH, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density. Small. 2018;14(22):1800619.
  • Li HL, Li XH, Guo DF, et al. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets. Nano Lett. 2016;16(9):5631–5638.
  • Lou L, Li YQ, Li XH, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures. Adv Mater. 2021;33(36):2102800.
  • Gao B, Lai QQ, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling. Sci Adv. 2020;6(39):eaba8169.
  • Gao B, Hu R, Pan ZY, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content. J Mater Sci Technol. 2021;65:29–37.
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151.
  • Liu YF, Cao Y, Mao QZ, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Mater. 2020;189:129–144.
  • Lu YP, Gao XZ, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143–150.
  • Gao XZ, Lu YP, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 2017;141:59–66.
  • Li QJ, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun. 2019;10:3563.
  • Sun SD, Li DW, Yang CP, et al. Direct atomic-scale observation of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys Rev Lett. 2022;128(1):015701.
  • Wang LH, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science. 2022;375(6586):1261–1265.
  • Zhang ZJ, Mao MM, Wang JW, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:10143.
  • Wang LH, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun. 2014;5:4402.
  • Wang LH, Du K, Yang CP, et al. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum. Nat Commun. 2020;11:1167.
  • Liu JB, Chen CX, Xu YQ, et al. Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in-situ TEM study. Scripta Mater. 2017;137:9–12.
  • Ding QQ, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574:223–227.
  • Wu ZG, Gao YF, Bei HB. Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 2016;120:108–119.
  • Cao BX, Wang C, Yang T, et al. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Mater. 2020;187:250–255.
  • Ma E. Unusual dislocation behavior in high-entropy alloys. Scripta Mater. 2020;181:127–133.
  • Kim SD, Park JY, Park SJ, et al. Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM. Sci Rep. 2019;9:15171.
  • Cao Y, Ni S, Liao XZ, et al. Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R. 2018;133:1–59.
  • Li JCM. Petch relation and grain boundary sources. Trans Metall Soc AIME. 1963;227:239–247.
  • Li JCM, Feng CR, Rath BB. Emission of dislocations from grain boundaries and its role in nanomaterials. Crystals. 2021;11(1):41.
  • Essmann U, Wilkens RM. The dislocation arrangement in cold-worked polycrystalline copper rods. Acta Metall. 1968;16(10):1275–1287.
  • Madec R, Devincre B, Kubin LP. From dislocation junctions to forest hardening. Phys Rev Lett. 2002;89(25):255508.
  • Wang YF, Huang CX, Fang XT, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Mater. 2020;174:19–23.
  • Zhou H, Huang CX, Sha XC, et al. In-situ observation of dislocation dynamics near heterostructured interfaces. Mater Res Lett. 2019;7(9):376–382.
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;21(7):713–719.
  • Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170):399.
  • Moan GD, Embury JD. A study of the bauschinger effect in Al-Cu alloys. Acta Metall. 1979;27(5):903–914.
  • Fang H, Horstemeyer MF, Baskes MI, et al. Atomistic simulations of bauschinger effects of metals with high angle and low angle grain boundaries. Comput Method Appl M. 2004;193(17-20):1789–1802.
  • Hoagland RG, Mitchell TE, Hirth JP, et al. On the strengthening effects of interfaces in multilayer fee metallic composites. Philos Mag A. 2002;82(4):643–664.
  • Hansen N. Hall–petch relation and boundary strengthening. Scripta Mater. 2004;51(8):801–806.
  • Hull D, Bacon DJ. Introduction to dislocations. 5th ed. Elsevier Ltd; 2011. 48–50.
  • Wu ZX, Curtin WA. Mechanism and energetics of < c + a > dislocation cross-slip in hcp metals. Proc Natl Acad Sci USA. 2016;113(40):11137–11142.
  • Jin ZH, Dunham ST, Gleiter H, et al. A universal scaling of planar fault energy barriers in face-centered cubic metals. Scripta Mater. 2011;64:605–608.
  • Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Natl Acad Sci USA. 2018;115(36):8919–8924.
  • Hong SI, Laird C. Mechanisms of slip mode modification in F.C.C. solid-solutions. Acta Metall Mater. 1990;38(8):1581–1594.
  • Xiong T, Yang WF, Zheng SJ, et al. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. J Mater Sci Technol. 2021;65:216–227.
  • Seal JR, Crimp MA, Bieler TR, et al. Analysis of slip transfer and deformation behavior across the α/β interface in Ti–5Al–2.5 Sn (wt. %) with an Equiaxed Microstructure. Mater Sci Eng A. 2012;552:61–68.