983
Views
0
CrossRef citations to date
0
Altmetric
BRIEF OVERVIEW

Single-atomic site catalysts for electrochemical nitrogen fixation

, , &
Pages 697-712 | Received 14 Mar 2023, Published online: 26 Jun 2023

References

  • Chen JG, Crooks RM, Seefeldt LC, et al. Beyond fossil fuel-driven nitrogen transformations. Science. 2018;360(6391):eaar6611.
  • Stüeken EE, Kipp MA, Koehler MC, et al. The evolution of earth's biogeochemical nitrogen cycle. Earth Sci Rev. 2016;160:220–239.
  • Soler-Jofra A, Perez J, van Loosdrecht MCM. Hydroxylamine and the nitrogen cycle: a review. Water Res. 2021;190:116723.
  • Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2013;368(1621):20130164.
  • Lehnert N, Musselman BW, Seefeldt LC. Grand challenges in the nitrogen cycle. Chem Soc Rev. 2021;50(6):3640–3646.
  • MacFarlane DR, Cherepanov PV, Choi J, et al. A roadmap to the ammonia economy. Joule. 2020;4(6):1186–1205.
  • Liu Z, Li D, Zhang J, et al. Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil. Geoderma. 2020;366:114222.
  • Johnson B, Goldblatt C. The nitrogen budget of earth. Earth Sci Rev. 2015;148:150–173.
  • Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16(5):263–276.
  • Camenzind T, Hättenschwiler S, Treseder KK, et al. Nutrient limitation of soil microbial processes in tropical forests. Ecol Monogr. 2018;88(1):4–21.
  • Sun J, Alam D, Daiyan R, et al. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ Sci. 2021;14(2):865–872.
  • Kyriakou V, Garagounis I, Vasileiou E, et al. Progress in the electrochemical synthesis of ammonia. Catal Today. 2017;286:2–13.
  • Airapetian VS, Glocer A, Gronoff G, et al. Prebiotic chemistry and atmospheric warming of early earth by an active young sun. Nat Geosci. 2016;9(6):452–455.
  • Kandemir T, Schuster ME, Senyshyn A, et al. The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew Chem Int Ed. 2013;52(48):12723–12726.
  • Jia HP, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev. 2014;43(2):547–564.
  • Smith C, Hill AK, Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ Sci. 2020;13(2):331–344.
  • Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal. 2018;1(7):490–500.
  • Vojvodic A, Medford AJ, Studt F, et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem Phys Lett. 2014;598:108–112.
  • Wang L, Xia M, Wang H, et al. Greening ammonia toward the solar ammonia refinery. Joule. 2018;2(6):1055–1074.
  • Li J, Zhan G, Yang J, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J Am Chem Soc. 2020;142(15):7036–7046.
  • Zhou F, Azofra LM, Ali M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ Sci. 2017;10(12):2516–2520.
  • Hao Q, Liu C, Jia G, et al. Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Mater Horiz. 2020;7(4):1014–1029.
  • Wang J, Zhang Z, Qi S, et al. Photo-assisted high performance single atom electrocatalysis of the N2 reduction reaction by a Mo-embedded covalent organic framework. J Mater Chem A. 2021;9(35):19949–19957.
  • Xu W, Fan G, Chen J, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew Chem Int Ed. 2020;59(9):3511–3516.
  • Rashid MI, Mujawar LH, Shahzad T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.
  • Bargaz A, Lyamlouli K, Chtouki M, et al. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol. 2018;9:1606.
  • Chen X, Guo Y, Du X, et al. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv Energy Mater. 2019;10(3):1903172.
  • Shi R, Zhao Y, Waterhouse GIN, et al. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019;9(11):9739–9750.
  • Li M, Lu Q, Liu M, et al. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction. ACS Appl Mater Interfaces. 2020;12(34):38266–38274.
  • Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today. 2019;27:69–90.
  • Shi L, Yin Y, Wang S, et al. Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal. 2020;10(12):6870–6899.
  • Wu Z, Song M, Wang J, et al. Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction. Catalysts. 2018;8(5):196.
  • Bai Y, Bai H, Qu K, et al. In-situ approach to fabricate BiOI photocathode with oxygen vacancies: understanding the N2 reduced behavior in photoelectrochemical system. Chem Eng J. 2019;362:349–356.
  • Andersen SZ, Colic V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature. 2019;570(7762):504–508.
  • Kwon Y-i, Kim SK, Kim YB, et al. Nitric oxide utilization for ammonia production using solid electrolysis cell at atmospheric pressure. ACS Energy Lett. 2021;6(12):4165–4172.
  • Li Y, Cheng C, Han S, et al. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 2022;7(3):1187–1194.
  • Zhang Y, Wang Q, Yang S, et al. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Adv Funct Mater. 2022;32(12):2112452.
  • Wang D, He N, Xiao L, et al. Coupling electrocatalytic nitric oxide oxidation over carbon cloth with hydrogen evolution reaction for nitrate synthesis. Angew Chem Int Ed. 2021;60(46):24605–24611.
  • Liu H, Duan C, Yang C, et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens Actuators B. 2015;218:60–66.
  • Bagheri H, Hajian A, Rezaei M, et al. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater. 2017;324:762–772.
  • Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B. 2018;236:546–568.
  • Yao Y, Zhao L, Dai J, et al. Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction. Angew Chem Int Ed. 2022;61(41):e202208215.
  • Yang J, Qi H, Li A, et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J Am Chem Soc. 2022;144(27):12062–12071.
  • Xu M, Xie Q, Duan D, et al. Atomically dispersed Cu sites on dual-mesoporous N-doped carbon for efficient ammonia electrosynthesis from nitrate. ChemSusChem. 2022;15(11):e202200231.
  • Cheng XF, He JH, Ji HQ, et al. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv Mater. 2022;34(36):e2205767.
  • Zhang Q, Qian H, Xu P, et al. Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou irrigation district. J Clean Prod. 2021;298:126783.
  • Temkin A, Evans S, Manidis T, et al. Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ Res. 2019;176:108442.
  • Hmelak Gorenjak A, Cencič A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013;42(2):158–172.
  • Li L, Tang C, Jin H, et al. Main-group elements boost electrochemical nitrogen fixation. Chem. 2021;7(12):3232–3255.
  • Guo W, Zhang K, Liang Z, et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem Soc Rev. 2019;48(24):5658–5716.
  • Chanda D, Xing R, Xu T, et al. Electrochemical nitrogen reduction: recent progress and prospects. Chem Commun. 2021;57(60):7335–7349.
  • Zhao R, Xie H, Chang L, et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem. 2019;1(2):3766–3788.
  • He Y, Wang M, Liu S, et al. A superaerophilic gas diffusion electrode enabling facilitated nitrogen feeding through hierarchical micro/nano channels for efficient ambient synthesis of ammonia. Chem Eng J. 2023;454:140106.
  • Liu D, Chen M, Du X, et al. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv Funct Mater. 2020;31(11):2008983.
  • Yan X, Liu D, Cao H, et al. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods. 2019;3(9):1800501.
  • Guo C, Ran J, Vasileff A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci. 2018;11(1):45–56.
  • Chen X, Zhao X, Kong Z, et al. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. J Mater Chem A. 2018;6(44):21941–21948.
  • Yang C, Zhu Y, Liu J, et al. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy. 2020;77:105126.
  • Liao W, Liu K, Wang J, et al. Boosting nitrogen activation via Ag nanoneedle arrays for efficient ammonia synthesis. ACS Nano. 2023;17(1):411–420.
  • Jiang Y, Wang M, Zhang L, et al. Distorted spinel ferrite heterostructure triggered by alkaline earth metal substitution facilitates nitrogen localization and electrocatalytic reduction to ammonia. Chem Eng J. 2022;450:138266.
  • Hao R, Tian L, Wang C, et al. Pollution to solution: a universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catal. 2022;2(3):622–638.
  • Choi J, Du H-L, Nguyen CK, et al. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: a potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020;5(6):2095–2097.
  • Wang M, Liu S, Ji H, et al. Unveiling the essential nature of lewis basicity in thermodynamically and dynamically promoted nitrogen fixation. Adv Funct Mater. 2020;30(32):2001244.
  • Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634–641.
  • Lu B, Liu Q, Chen S. Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 2020;10(14):7584–7618.
  • Lang R, Du X, Huang Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chem Rev. 2020;120(21):11986–12043.
  • Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev. 2020;120(21):12217–12314.
  • Cheng N, Zhang L, Doyle-Davis K, et al. Single-atom catalysts: from design to application. Electrochem Energy Rev. 2019;2(4):539–573.
  • Chen Y, Ji S, Chen C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018;2(7):1242–1264.
  • Wang J, Li Z, Wu Y, et al. Fabrication of single-atom catalysts with precise structure and high metal loading. Adv Mater. 2018;30(48):e1801649.
  • Zhang Q, Guan J. Single-atom catalysts for electrocatalytic applications. Adv Funct Mater. 2020;30(31):2000768.
  • He H, Wang HH, Liu J, et al. Research progress and application of single-atom catalysts: a review. Molecules. 2021;26(21). doi:10.3390/molecules26216501.
  • Fan M, Cui J, Wu J, et al. Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small. 2020;16(22):e1906782.
  • Chen W, Pei J, He CT, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(50):16086–16090.
  • Lei Y, Wang Y, Liu Y, et al. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew Chem Int Ed. 2020;59(47):20794–20812.
  • Shi Y, Ma ZR, Xiao YY, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun. 2021;12(1):3021.
  • Ao X, Zhang W, Li Z, et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano. 2019;13(10):11853–11862.
  • Luo E, Zhang H, Wang X, et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew Chem Int Ed. 2019;58(36):12469–12475.
  • Zhang Z, Sun J, Wang F, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew Chem Int Ed. 2018;57(29):9038–9043.
  • Bai L, Hsu CS, Alexander DTL, et al. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J Am Chem Soc. 2019;141(36):14190–14199.
  • Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc. 2020;142(16):7425–7433.
  • Gu H, Wu J, Zhang L. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022;15(11):9747–9763.
  • Wang Q, Liu K, Fu J, et al. Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew Chem Int Ed. 2021;60(48):25241–25245.
  • Wan J, Zheng J, Zhang H, et al. Single atom catalysis for electrocatalytic ammonia synthesis. Catal Sci Technol. 2022;12(1):38–56.
  • Li Y, Zhang Q, Mei Z, et al. Recent advances and perspective on electrochemical ammonia synthesis under ambient conditions. Small Methods. 2021;5(11):e2100460.
  • Xu H, Ma Y, Chen J, et al. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chem Soc Rev. 2022;51(7):2710–2758.
  • Yang B, Ding W, Zhang H, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ Sci. 2021;14(2):672–687.
  • van der Ham CJ, Koper MT, Hetterscheid DG. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev. 2014;43(15):5183–5191.
  • Back S, Jung Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys Chem Chem Phys. 2016;18(13):9161–9166.
  • Martín AJ, Shinagawa T, Pérez-Ramírez J. Electrocatalytic reduction of nitrogen: from Haber-Bosch to ammonia artificial leaf. Chem. 2019;5(2):263–283.
  • McPherson IJ, Sudmeier T, Fellowes J, et al. Materials for electrochemical ammonia synthesis. Dalton Trans. 2019;48(5):1562–1568.
  • Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel. J Power Sources. 2008;185(1):459–465.
  • Chen S, Perathoner S, Ampelli C, et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew Chem Int Ed. 2017;56(10):2699–2703.
  • Kordali V, Kyriacou G, Lambrou C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun. 2000;17:1673–1674.
  • Zhang R, Shuai D, Guy KA, et al. Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species. ChemCatChem. 2013;5(1):313–321.
  • Zheng N, Zhang T. Preface: single-atom catalysts as a new generation of heterogeneous catalysts. Natl Sci Rev. 2018;5(5):625.
  • Yu B, Li H, White J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv Funct Mater. 2019;30(6):1905665.
  • Tao H, Choi C, Ding L-X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem. 2019;5(1):204–214.
  • Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater. 2018;30(40):1870301.
  • Chen D, Luo M, Ning S, et al. Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction. Small. 2022;18(4):e2104043.
  • Qin Q, Heil T, Antonietti M, et al. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods. 2018;2(12):1800202.
  • Wang X, Wang W, Qiao M, et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull. 2018;63(19):1246–1253.
  • Li J, Chen S, Quan F, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem. 2020;6(4):885–901.
  • Su H, Chen L, Chen Y, et al. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia. Angew Chem Int Ed. 2020;59(46):20411–20416.
  • Lü F, Zhao S, Guo R, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy. 2019;61:420–427.
  • Wang M, Liu S, Qian T, et al. Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun. 2019;10(1):341.
  • Zhang R, Jiao L, Yang W, et al. Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. J Mater Chem A. 2019;7(46):26371–26377.
  • Li Y, Li J, Huang J, et al. B Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew Chem Int Ed. 2021;60(16):9078–9085.
  • Chen J, Kang Y, Zhang W, et al. Lattice-confined single-atom Fe1Sx on mesoporous TiO2 for boosting ambient electrocatalytic N2 reduction reaction. Angew Chem Int Ed. 2022;61(27):e202203022.
  • Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed. 2019;58(8):2321–2325.
  • Shi L, Bi S, Qi Y, et al. Anchoring Mo single-atom sites on B/N codoped porous carbon nanotubes for electrochemical reduction of N2 to NH3. ACS Catal. 2022;12(13):7655–7663.
  • Hui L, Xue Y, Yu H, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J Am Chem Soc. 2019;141(27):10677–10683.
  • Ma Y, Yang T, Zou H, et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv Mater. 2020;32(33):e2002177.
  • Chen Y, Guo R, Peng X, et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano. 2020;14(6):6938–6946.
  • Zhang S, Jin M, Shi T, et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew Chem Int Ed. 2020;59(32):13423–13429.
  • Liu Y, Xu Q, Fan X, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions. J Mater Chem A. 2019;7(46):26358–26363.
  • Zang W, Yang T, Zou H, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 2019;9(11):10166–10173.
  • Han L, Ren Z, Ou P, et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew Chem Int Ed. 2021;60(1):345–350.
  • Shen P, Li X, Luo Y, et al. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl Catal B. 2022;316:121651.
  • Wang J, Feng T, Chen J, et al. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy. 2021;86:106088.
  • Wu ZY, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun. 2021;12(1):2870.
  • Li P, Jin Z, Fang Z, et al. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ Sci. 2021;14(6):3522–3531.
  • Li J, Zhang Y, Liu C, et al. 3.4% solar-to-ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS2 nanosheets. Adv Funct Mater. 2021;32(18):2108316.
  • Chen H, Zhang C, Sheng L, et al. Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. J Hazard Mater. 2022;434:128892.
  • Liu H, Lang X, Zhu C, et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew Chem Int Ed. 2022;61(23):e202202556.
  • Zhang Y, Chen X, Wang W, et al. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl Catal B. 2022;310:121346.
  • Hoffman BM, Lukoyanov D, Yang ZY, et al. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev. 2014;114(8):4041–4062.
  • Igarashi RY, Seefeldt LC. Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit Rev Biochem Mol Biol. 2003;38(4):351–384.
  • Peng X, Mi Y, Bao H, et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy. 2020;78:105321.
  • He Y, Liu S, Wang M, et al. Advancing the electrochemistry of gas-involved reactions through theoretical calculations and simulations from microscopic to macroscopic. Adv Funct Mater. 2022;32(48):2208474.
  • Shen X, Liu S, Xia X, et al. Interfacial microextraction boosting nitrogen feed for efficient ambient ammonia synthesis in aqueous electrolyte. Adv Funct Mater. 2022;32(17):2109422.
  • Liu K, Fu J, Zhu L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale. 2020;12(8):4903–4908.
  • Wang M, Liu S, Ji H, et al. Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat Commun. 2021;12(1):3198.
  • Cheng H, Ding LX, Chen GF, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater. 2018;30(46):1803694.
  • Yandulov DV, Schrock RR. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science. 2003;301(5629):76–78.
  • Liu X, Liu Y, Yang W, et al. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem Eur J. 2022;28(59):e202201471.
  • Qi Z, Zhou Y, Guan R, et al. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv Mater. 2023: e2210575. doi:10.1002/adma.202210575.
  • Chen Y, Lin J, Jia B, et al. Isolating single and few atoms for enhanced catalysis. Adv Mater. 2022;34(39):e2201796.
  • Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc. 2017;139(36):12480–12487.
  • Weng Z, Jiang J, Wu Y, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc. 2016;138(26):8076–8079.
  • Qin J, Liu H, Zou P, et al. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J Am Chem Soc. 2022;144(5):2197–2207.
  • Li X, Rong H, Zhang J, et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020;13(7):1842–1855.
  • Wu Y, Jiang Z, Lu X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature. 2019;575(7784):639–642.
  • Shang H, Jiang Z, Zhou D, et al. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem Sci. 2020;11(23):5994–5999.
  • Chen Y, Ji S, Zhao S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun. 2018;9(1):5422.
  • Chen S, Li X, Kao CW, et al. Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew Chem Int Ed. 2022;61(32):e202206233.
  • Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal. 2018;1(5):339–348.
  • Gong YN, Jiao L, Qian Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem Int Ed. 2020;59(7):2705–2709.
  • Zhu T, Chen Q, Liao P, et al. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small. 2020;16(49):e2004526.
  • Jouny M, Lv JJ, Cheng T, et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat Chem. 2019;11(9):846–851.
  • Geng J, Ji S, Jin M, et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew Chem Int Ed. 2023;62(6):e202210958.
  • Zhang X, Zhu X, Bo S, et al. Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat Commun. 2022;13(1):5337.
  • Wei X, Wen X, Liu Y, et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J Am Chem Soc. 2022;144(26):11530–11535.
  • Liu S, Wang M, Cheng Q, et al. Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules. ACS Nano. 2022;16(11):17911–17930.