1,076
Views
7
CrossRef citations to date
0
Altmetric
Report

Pore-induced defects during thermo-mechanical fatigue of a fourth-generation single crystal superalloy

, , , , , , , , , , , & show all
Pages 678-687 | Received 25 Apr 2023, Published online: 21 Jun 2023

References

  • Ru Y, Hu B, Zhao W, et al. Topologically inverse microstructure in single-crystal superalloys: microstructural stability and properties at ultrahigh temperature. Mater Res Letts. 2021;9(12):497–506. doi:10.1080/21663831.2021.1982785
  • Reed RC. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2008.
  • Li X, Liu Y, Zhao Y, et al. Oxygen changes crack modes of Ni-based single crystal superalloy. Mater Res Letts. 2021;9(12):531–539. doi:10.1080/21663831.2021.1993367
  • Tan ZH, Wang XG, Cheng Y, et al. Co content dependence on the microstructure characteristic and creep performance at elevated temperature in Ru-containing single crystal superalloys. Mater Sci Eng A. 2021;825:141906. doi:10.1016/j.msea.2021.141906
  • Ge Z, Xie G, Segersӓll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy. Int J Fatigue. 2022;156:106634. doi:10.1016/j.ijfatigue.2021.106634
  • Zhang W-J. Thermal mechanical fatigue of single crystal superalloys: achievements and challenges. Mater Sci Eng A. 2016;650:389–395. doi:10.1016/j.msea.2015.10.078
  • Segersӓll M, Deng D. A comparative study between in- and out-of-phase thermomechanical fatigue behaviour of a single-crystal superalloy. Int J Fatigue. 2021;146:106162. doi:10.1016/j.ijfatigue.2021.106162
  • Han GM, Yu JJ, Sun XF, et al. Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy. Mater Sci Eng A. 2011;528:6217–6224. doi:10.1016/j.msea.2011.04.083
  • Yu J, Han G, Chu Z, et al. High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy. Mater Sci Eng A. 2014;592:164–172. doi:10.1016/j.msea.2013.10.055
  • Yang J, Jing F, Yang Z, et al. Thermomechanical fatigue damage mechanism and life assessment of a single crystal Ni-based superalloy. J Alloys Compd. 2021;872:159578. doi:10.1016/j.jallcom.2021.159578
  • Norman V, Stekovic S, Jones J, et al. On the mechanistic difference between in-phase and out-of-phase thermomechanical fatigue crack growth. Int J Fatigue. 2020;135: 105528. doi:10.1016/j.ijfatigue.2020.105528
  • Segersäll M, Moverare JJ, Leidermark D, et al. In- and out-of-phase thermomechanical fatigue of a Ni-based single-crystal superalloy. Eurosuperalloys. 2014;2014:19003.
  • Luo C, Yuan H. Anisotropic thermomechanical fatigue of a nickel-base single-crystal superalloy Part I: effects of crystal orientations and damage mechanisms. Int J Fatigue. 2023;168:107438. doi:10.1016/j.ijfatigue.2022.107438
  • Zhang JX, Murakumo T, Harada H, et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scr Mater. 2003;48:287–293. doi:10.1016/S1359-6462(02)00379-2
  • Liu P, Liu X, Jiang X, et al. Evolution of phase interface microstructure and its effects on stress rupture property of a 4th generation nickel-based single crystal superalloy after thermal exposure. Mater Sci Eng A. 2023;865:144640. doi:10.1016/j.msea.2023.144640
  • Huang Y, Wang X, Cui C, et al. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy. J Mater Sci Technol. 2021;69:180–187. doi:10.1016/j.jmst.2020.07.008
  • Steuer S, Villechaise P, Pollock TM, et al. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy. Mater Sci Eng A. 2015;645:109–115. doi:10.1016/j.msea.2015.07.045
  • Jiang W, Li P, Yao W, et al. The effect of porosity size on the high cycle fatigue life of nickel-based single crystal superalloy at 980°C. Int J Fatigue. 2021;147:106191. doi:10.1016/j.ijfatigue.2021.106191
  • Ormastroni LMB, Suave LM, Cervellon A, et al. LCF, HCF and VHCF life sensitivity to solution heat treatment of a third-generation Ni-based single crystal superalloy. Int J Fatigue. 2020;130:105247. doi:10.1016/j.ijfatigue.2019.105247
  • Zhao Z, Li Q, Zhang F, et al. Transition from internal to surface crack initiation of a single-crystal superalloy in the very-high-cycle fatigue regime at 1100°C. Int J Fatigue. 2021;150:106343. doi:10.1016/j.ijfatigue.2021.106343
  • Cervellon A, Cormier J, Mauget F, et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy. Int J Fatigue. 2017;104:251–262. doi:10.1016/j.ijfatigue.2017.07.021
  • Cervellon A, Cormier J, Mauget F, et al. Very high cycle fatigue of Ni-based single-crystal superalloys at high temperature. Metall Mater Trans A. 2018;49:3938–3950. doi:10.1007/s11661-018-4672-6
  • Sun F, Zhang J, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling. Acta Mater. 2014;67:45–57. doi:10.1016/j.actamat.2013.12.011
  • Fu B, Zhang J, Harada H. Interaction between crack and twins in TMS-82 superalloy during thermomechanical fatigue process. Prog Nat Sci: Mater Int. 2013;23(5):508–513. doi:10.1016/j.pnsc.2013.09.005
  • Wang XG, Liu JL, Liu JD, et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature. Scr Mater. 2018;152:94–97. doi:10.1016/j.scriptamat.2018.04.020
  • Neu RW. Crack paths in single-crystal Ni-base superalloys under isothermal and thermomechanical fatigue. Int J Fatigue. 2019;123:268–278. doi:10.1016/j.ijfatigue.2019.02.022
  • Moverare JJ, Johansson S, Reed RC, et al. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy. Acta Mater. 2009;57:2266–2276. doi:10.1016/j.actamat.2009.01.027
  • Cervollon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature. Acta Mater. 2020;188:131–144. doi:10.1016/j.actamat.2020.02.012
  • Zhang JX, Ro Y, Zhou H, et al. Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy. Scr Mater. 2006;54:655–660. doi:10.1016/j.scriptamat.2005.10.030
  • Qi D, Fu B, Du K, et al. Temperature effects on the transition from Lomer-Cottrell locks to deformation twinning in a Ni-Co-based superalloy. Scr Mater. 2016;125:24–28. doi:10.1016/j.scriptamat.2016.07.033
  • Vorontsov VA, Kovarik L, Mills MJ, et al. High-resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystal. Acta Mater. 2012;60:4866–4878. doi:10.1016/j.actamat.2012.05.014
  • Kear BH, Giamei AF, Leverant GR, et al. Viscous slip in the L12 lattice. Scr Met. 1969;3(7):455–460. doi:10.1016/0036-9748(69)90130-6
  • Wang-Koh YM, Messe OMDM, Schwalbe CWM, et al. The Effect of strain rate on the tensile deformation behavior of single crystal, Ni-based superalloys. Metall Mater Trans A. 2023;54:1456–1468. doi:10.1007/s11661-023-07007-x
  • Kakehi K. Influence of secondary precipitates and crystallographic orientation on the strength of single crystals of a Ni-based superalloy. Metall Mater Trans A. 1999;30(5):1249–1259. doi:10.1007/s11661-999-0274-7
  • Lv X, Zhang J. Reversible formation of stacking faults in a nickel-based single crystal TMS-82 superalloy. J Mater Res. 2013;28(24):3332–3338.
  • Yamashita M, Kakehi K. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloy with a high amount of tantalum. Scr Mater. 2006;55:139–142. doi:10.1016/j.scriptamat.2006.03.048
  • Wang XG, Liu JL, Jin T, et al. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures. Mater Sci Eng A. 2014;598:154–161. doi:10.1016/j.msea.2014.01.001
  • Yang WC, Qu PF, Liu C, et al. Temperature dependence of compressive behavior and deformation microstructure of a Ni-based single crystal superalloy with low stacking fault energy. Trans Nonferrous Met. Soc. China. 2023;33:157–167. doi:10.1016/S1003-6326(22)66097-7
  • Liu F, Wang ZG, Ai SH, et al. Thermo-mechanical fatigue of single crystal nickel-based superalloy DD8. Scr Mater. 2003;48:1265–1270. doi:10.1016/S1359-6462(03)00051-4
  • Lall C, Chin S, Pope DP. The orientation and temperature dependence of the yield stress of Ni3(Al, Nb) single crystals. Metall Mater Trans A. 1979;10A:1323–1332.
  • Hong HU, Yoon JG, Choi BG, et al. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy. Int J Fatigue. 2014;69:22–27. doi:10.1016/j.ijfatigue.2013.01.015
  • Kakehi K. Tension/compression asymmetry in creep behavior of a Ni-based superalloy. Scr Mater. 1999;41(5):461–465. doi:10.1016/S1359-6462(99)00191-8
  • Zhang P, Li J, Yuan Y, et al. Correlation the 〈112〉{111} slip with high temperature tension/compression asymmetry in the single-crystal nickel-based superalloy PWA1483. Mater Res Letts. 2023;11(6):399–406. doi:10.1080/21663831.2023.2166432
  • Barba D, Pederazzini S, Vilalta-Clemente A, et al. On the composition of microtwins in a single crystal nickel-based superalloy. Scr Mater. 2017;127:37–40. doi:10.1016/j.scriptamat.2016.08.029
  • Barba D, Alabort E, Pederazzini S, et al. On the microtwinning mechanism in a single crystal superalloy. Acta Mater. 2017;135:314–329. doi:10.1016/j.actamat.2017.05.072
  • Lucadamo G, Medlin DL. Dislocation emission at junctions between Σ = 3 grain boundaries in gold thin films. Acta Mater. 2002;50:3045–3055. doi:10.1016/S1359-6454(02)00133-7
  • Kovarik L, Unocic RR, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog Mater Sci. 2009;54:839–873. doi:10.1016/j.pmatsci.2009.03.010
  • Smith TM, Esser BD, Good B, et al. Segregation and phase transformations along superlattice intrinsic stacking faults in Ni-based superalloys. Metall Mater Trans A. 2018;49A:4186–4198.
  • Lu S, Antonov S, Xue F, et al. Segregation-assisted phase transformation and anti-phase boundary formation during creep of a γʹ-strengthened Co-based superalloy at high temperatures. Acta Mater. 2021;215:117099. doi:10.1016/j.actamat.2021.117099
  • Yao X, Ding Q, Wei X, et al. The effects of key elements Re and Ru on the phase morphologies and microstructure in Ni-based single crystal superalloys. J Alloys Compd. 2022;926:166835. doi:10.1016/j.jallcom.2022.166835
  • Wu X, Makineni SK, Liebscher CH, et al. Unveiling the Re effect in Ni-based single crystal superalloys. Mater. 2020;11(1):389. doi:10.1038/s41467-019-14062-9
  • Wu X, Makineni SK, Kontis P, et al. On the segregation of Re at dislocations in the γʹ phase of Ni-based single crystal superalloys. Mater. 2018;4:109–114.
  • Zhang J, Huang T, Lu F, et al. Unveiling the Re segregation at γ/γ′ interface in Ni-based superalloy. Scr Mater. 2021;204:114131. doi:10.1016/j.scriptamat.2021.114131