3,888
Views
0
CrossRef citations to date
0
Altmetric
BRIEF OVERVIEW

High-entropy materials for electrocatalytic applications: a review of first principles modeling and simulations

ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 713-732 | Received 01 Mar 2023, Published online: 26 Jun 2023

References

  • Ghafarollahi A, Maresca F, Curtin WA. Solute/screw dislocation interaction energy parameter for strengthening in bcc dilute to high entropy alloys. Modelling Simul Mater Sci Eng. 2019;27:085011. doi:10.1088/1361-651X/ab4969
  • Shen YX, Spearot DE. Mobility of dislocations in FeNiCrCoCu high entropy alloys. Modelling Simul Mater Sci Eng. 2021;29:085017. doi:10.1088/1361-651X/ac336a
  • Zhu WH, Huo WY, Wang SQ, et al. Phase formation prediction of high-entropy alloys: a deep learning study. J Mater Res Technol. 2022;18:800–809. doi:10.1016/j.jmrt.2022.01.172
  • Liu XL, Zhang JX, Pei ZR. Machine learning for high-entropy alloys: progress, challenges and opportunities. Prog Mater Sci. 2023;131:101018. doi:10.1016/j.pmatsci.2022.101018
  • Huo WY, Fang F, Liu XD, et al. Remarkable strain-rate sensitivity of nanotwinned CoCrFeNi alloys. Appl Phys Lett. 2019;114:101904. doi:10.1063/1.5088921
  • Huo WY, Wang SQ, Fang F, et al. Microstructure and corrosion resistance of highly <111> oriented electrodeposited CoNiFe medium-entropy alloy films. J Mater Res Technol. 2022;20:1677–1684. doi:10.1016/j.jmrt.2022.07.175
  • Zhao S, Zhang Y, Weber WJ. High entropy alloys: irradiation. Encycl Mater Metal Alloy. 2022;2:533–547. Available from https://www.osti.gov/biblio/1854466
  • Huo WY, Wang SQ, Zhu WH, et al. Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten. 2021;3:161–180. doi:10.1007/s42864-021-00084-8
  • Jia Z, Nomoto K, Wang Q, et al. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions. Adv Funct Mater. 2021;31:2101586. doi:10.1002/adfm.202101586
  • Park CE, Senthil RA, Jeong GH, et al. Architecting the high-entropy oxides on 2D MXene nanosheets by rapid microwave-heating strategy with robust photoelectrochemical oxygen evolution performance. Small. 2023:2207820. doi:10.1002/smll.202207820
  • Calzolari A, Oses C, Toher C, et al. Plasmonic high-entropy carbides. Nat Commun. 2022;13:5993. doi:10.1038/s41467-022-33497-1
  • Barbarossa S, Orrù R, Cao G, et al. Optical properties of bulk high-entropy diborides for solar energy applications. J Alloys Compd. 2023;935:16796. doi:10.1016/j.jallcom.2022.167965
  • Li Y, Tay YY, Buenconsejo P, et al. Laser annealing-induced phase transformation behaviors of high entropy metal alloy, oxide, and nitride nanoparticle combinations. Adv Funct Mater. 2023;33:2211279. doi:10.1002/adfm.202211279
  • Nguyen TX, Su YH, Lin CC, et al. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv Funct Mater. 2021;31:2106229. doi:10.1002/adfm.202106229
  • Zhang LK, Lu YP, Amar A, et al. Designing eutectic high-entropy alloys containing nonmetallic elements. Adv Eng Mater. 2022;24:2200486. doi:10.1002/adem.202200486
  • Jing L, Li WL, Gao C, et al. Enhanced energy storage performance achieved in multilayered PVDF–PMMA nanocomposites incorporated with high-entropy oxide nanofibers. ACS Appl Energy Mater. 2023;6:3093–3101. doi:10.1021/acsaem.3c00054
  • Mohili R, Hemanth NR, Jin H, et al. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. J Mater Chem A. 2023. doi:10.1039/D2TA10081A
  • Jia Z, Yang T, Sun LG, et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv Mater. 2020;32:2000385. doi:10.1002/adma.202000385
  • Akrami S, Edalati P, Fuji M, et al. High-entropy ceramics: review of principles, production and applications. Mat Sci Eng R. 2021;146:1006. doi:10.1016/j.mser.2021.100644
  • Nellaiappan S, Katiyar NK, Kumar R, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization. ACS Catal. 2020;10:3658–3663. doi:10.1021/acscatal.9b04302
  • Sim E, Song S, Vuckovic S, et al. Improving results by improving densities: density-corrected density functional theory. J Am Chem Soc. 2022;144:6625–6639. doi:10.1021/jacs.1c11506
  • Thomas LH. The calculation of atomic fields. Math Proc Cambridge Philos Soc. 1927;23:542–548. doi:10.1017/S0305004100011683
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B. 1964;136:864–871. doi:10.1103/PhysRev.136.B864
  • Janesko B. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev. 2021;50:8470–8495. doi:10.1039/D0CS01074J
  • Tian D, Denny SR, Li K, et al. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem Soc Rev. 2021;50:12338–12376. doi:10.1039/D1CS00590A
  • Romney DK, Miller SJ. Climbing Jacob's ladder. Science. 2015;347:829. doi:10.1126/science.aaa5623
  • Perdew JP, Wang Y. Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B. 1986;3:8800–8802. doi:10.1103/PhysRevB.33.8800
  • Perdew JP, Chevary JA, Vosko SH. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1993;46:6671–6687. doi:10.1103/PhysRevB.46.6671
  • Ren K, Wang K, Cheng Y, et al. Two-dimensional heterostructures for photocatalytic water splitting: a review of recent progress. Nano Fut. 2020;4:032006. doi:10.1088/2399-1984/abacab
  • Becke AD. Simulation of delocalized exchange by local density functionals. J Chem Phys. 2020;112:4020–4026. doi:10.1063/1.480951
  • Cohen AJ, Mori-Sanchez P, Yang WT. Insights into current limitations of density functional theory. Science. 2008;321:792–794. doi:10.1126/science.1158722
  • Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756. doi:10.1063/1.1316015
  • Cundari TR, Stevens WJ. Effective core potential methods for the lanthanides. J Chem Phys. 1993;98:5555. doi:10.1063/1.464902
  • Laasonen K, Pasquarello A, Car R, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B. 1993;47:10142. doi:10.1103/PhysRevB.47.10142
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758. doi:10.1103/PhysRevB.59.1758
  • Ferrari A, Dutta B, Gubaev K, et al. Frontiers in atomistic simulations of high entropy alloys. J Appl Phys. 2020;128:150901. doi:10.1063/5.0025310
  • Li T, Morris JW, Nagasako N, et al. ‘Ideal’ engineering alloys. Phys Rev Lett. 2007;98:105503. doi:10.1103/PhysRevLett.98.105503
  • Vitos L. Total-energy method based on the exact muffin-tin orbitals theory. Phys Rev B. 2001;64:014107. doi:10.1103/PhysRevB.64.014107
  • Zunger A, Wei S, Ferreira LG, et al. Special quasirandom structures. Phys Rev Lett. 1990;65:353–356. doi:10.1103/PhysRevLett.65.353
  • Kivy MB, Hong Y, Zaeem MA. A review of multi-scale computational modeling tools for predicting structures and properties of multi-principal element alloys. Metals. 2019;9:254. doi:10.3390/met9020254
  • Toda-Caraballo I, Wróbel JS, Nguyen-Manh D, et al. Simulation and modeling in high entropy alloys. JOM. 2017;69:2137–2149. doi:10.1007/s11837-017-2524-2
  • Wang S, Xiong J, Li D, et al. Comparison of two calculation models for high entropy alloys: virtual crystal approximation and special quasi-random structure. Mater Lett. 2021;282:128754. doi:10.1016/j.matlet.2020.128754
  • Raphel A, Vivekanandhan P, Rajasekaran AK, et al. Tuning figure of merit in Na doped nanocrystalline PbSnTeSe high entropy alloy via band engineering. Mater Sci Semicond Process. 2022;138:106270. doi:10.1016/j.mssp.2021.106270
  • Mu Y, Liu H, Liu Y, et al. An ab initio and experimental studies of the structure, mechanical parameters and state density on the refractory high-entropy alloy systems. J Alloy Compd. 2017;714:668–680. doi:10.1016/j.jallcom.2017.04.237
  • Tian F, Wang D, Shen J, et al. An ab initio investigation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Mater Lett. 2016;166:271–275. doi:10.1016/j.matlet.2015.12.064
  • Tian F. A review of solid-solution models of high-entropy alloys based on ab initio calculations. Front Mater. 2017;4:1–10. doi:10.3389/fmats.2017.00036
  • Tian F, Varga LK, Chen N, et al. Ab initio investigation of high-entropy alloys of 3d elements. Phys Rev B. 2013;87:075144. doi:10.1103/PhysRevB.87.075144
  • Kohn W, Rostoker N. Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev. 1954;94:1111–1120. doi:10.1103/PhysRev.94.1111
  • Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Mater Charact. 2019;147:464–511. doi:10.1016/j.matchar.2018.06.019
  • Jiang C, Wolverton C, Sofo J, et al. First-principles study of binary bcc alloys using special quasi-random structures. Phys Rev B. 2004;69:1–10. doi:10.1103/PhysRevB.69.214202
  • Shin D, Arróyave R, Liu Z, et al. Thermodynamic properties of binary hcp solution phases from special quasirandom structures. Phys Rev B. 2006;74:024204. doi:10.1103/PhysRevB.74.024204
  • Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 2019;181:124–138. doi:10.1016/j.actamat.2019.09.026
  • Yao XJ, Ma L, Jiang S, et al. Thermodynamic properties of Wx(TaTiVCr)1-x high-entropy(-like) alloy and influence of tungsten content. Phys Status Solidi B. 2019;256:1800741. doi:10.1002/pssb.201800741
  • Tian F, Varga LK, Shen J, et al. Calculating elastic constants in high-entropy alloys using the coherent potential approximation: current issues and errors. Comput Mater Sci. 2016;111:350–358. doi:10.1016/j.commatsci.2015.09.058
  • Jiang C, Uberuaga BP. Efficient ab initio modeling of random multicomponent alloys. Phys Rev Lett. 2016;116:105501. doi:10.1103/PhysRevLett.116.105501
  • Sorkin V, Tan TL, Yu ZG, et al. Generalized small set of ordered structures method for the solid-solution phase of high-entropy alloys. Phys Rev B. 2020;102:174209. doi:10.1103/PhysRevB.102.174209
  • Persson KA, Waldwick B, Lazic P, et al. Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B. 2012;85:235438. doi:10.1103/PhysRevB.85.235438
  • Zhao S, Egami T, Stocks GM, et al. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys. Phys Rev Mater. 2018;2:013602. doi:10.1103/PhysRevMaterials.2.013602
  • Ferrari A, Körmann F. Surface segregation in Cr-Mn-Fe-Co-Ni high entropy alloys. Appl Surf Sci. 2020;533:14747. doi:10.1016/j.apsusc.2020.147471
  • Zhao X, Liu X, Huang B, et al. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J Mater Chem A. 2019;7:24583. doi:10.1039/C9TA08661G
  • Sun Y, Wang J, Liu Q, et al. Itinerant ferromagnetic half metallic cobalt–iron couples: promising bifunctional electrocatalysts for ORR and OER. J Mater Chem A. 2019;7:27175. doi:10.1039/C9TA08616A
  • Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater. 2018;30:1800588. doi:10.1002/adma.201800588
  • Nemani SK, Zhang B, Wyatt BC, et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano. 2021;15:12815–12825. doi:10.1021/acsnano.1c02775
  • Medford AJ, Vojvodic A, Hummelshøj JS, et al. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal. 2015;328:36. doi:10.1016/j.jcat.2014.12.033
  • Pedersen JK, Batchelor T, Bagger A, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020;10:2169–2176. doi:10.1021/acscatal.9b04343
  • Abild-Pedersen F, Greeley J, Studt F, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett. 2007;99:016105. doi:10.1103/PhysRevLett.99.016105
  • Fernández EM, Moses PG, Toftelund A, et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed. 2008;47:4683. doi:10.1002/anie.200705739
  • Garlyyev B, Fichtner J, Piqué O, et al. Revealing the nature of active sites in electrocatalysis. Chem Sci. 2019;10:8060. doi:10.1039/C9SC02654A
  • Montemore MM, Medlin JW. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal Sci Technol. 2014;4:3748. doi:10.1039/C4CY00335G
  • Pedersen JK, Batchelor T, Yan D, et al. Surface electrocatalysis on high-entropy alloys. Curr Opin Electrochem. 2021;26:100651. doi:10.1016/j.coelec.2020.100651
  • Bligaard T, Nørskov JK. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta. 2007;52:5512. doi:10.1016/j.electacta.2007.02.041
  • Hammer B, Morikawa Y, Nørskov JK. CO chemisorption at metal surfaces and overlayers. Phys Rev Lett. 1996;76:2141. doi:10.1103/PhysRevLett.76.2141
  • Wu T, Sun M, Huang B. Probing the irregular lattice strain-induced electronic structure variations on late transition metals for boosting the electrocatalyst activity. Small. 2020;16:2002434. doi:10.1002/smll.202002434
  • Wu D, Dong C, Zhan H, et al. Bond-energy-integrated descriptor for oxygen electrocatalysis of transition metal oxides. J Phys Chem Lett. 2018;9:3387. doi:10.1021/acs.jpclett.8b01493
  • Sun S, Shen G, Jiang J, et al. Boosting oxygen evolution kinetics by Mn–N–C motifs with tunable spin state for highly efficient solar-driven water splitting. Adv Energy Mater. 2019;9:1901505. doi:10.1002/aenm.201901505
  • Disa AS, Kumah DP, Malashevich A, et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys Rev Lett. 2015;114:026801. doi:10.1103/PhysRevLett.114.026801
  • Sun W, Song Y, Gong X, et al. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. Chem Sci. 2015;6:4993. doi:10.1103/10.1039/C5SC01251A
  • Wang L, Liu J, Wu M, et al. Strain-induced modulation of spin configuration in LaCoO3. Front Mater. 2020;7:60. doi:10.3389/fmats.2020.00060
  • Xin Y, Li S, Qian Y, et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 2020;10:11280–11306. doi:10.1021/acscatal.0c03617
  • Du X, Huang J, Zhang J, et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew Chem Int Ed. 2019;58:4484–4502. doi:10.1002/anie.201810104
  • Ding J, Asta M, Ritchie RO. Melts of CrCoNi-based high-entropy alloys: atomic diffusion and electronic/atomic structure from ab initio simulation. Appl Phys Lett. 2018;113:111902. doi:10.1063/1.5045216
  • Odbadrakh K, Enkhtor L, Amartaivan T, et al. Electronic structure and atomic level complexity in Al0.5TiZrPdCuNi high-entropy alloy in glass phase. J Appl Phys. 2019;126:095104. doi:10.1063/1.5110519
  • Wang R, Huang J, Zhang X, et al. Two-dimensional high-entropy metal phosphorus trichalcogenides for enhanced hydrogen evolution reaction. ACS Nano. 2022;16:3593–3603. doi:10.1021/acsnano.2c01064
  • Qu J, Li Y, Li F, et al. Direct thermal enhancement of hydrogen evolution reaction of on-chip monolayer MoS2. ACS Nano. 2022;16:2921–2927. doi:10.1021/acsnano.1c10030
  • Li Y, Peng C, Hu H, et al. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat Commun. 2022;13:1143. doi:10.1038/s41467-022-28805-8
  • Jeong S, Mai HD, Nam KH, et al. Self-healing graphene-templated platinum-nickel oxide heterostructures for overall water splitting. ACS Nano. 2022;16:930–938. doi:10.1021/acsnano.1c08506
  • He W, Liu H, Cheng J, et al. Modulating the electronic structure of nickel sulfide electrocatalysts by chlorine doping toward highly efficient alkaline hydrogen evolution. ACS Appl Mater Interfaces. 2022;14:6869–6875. doi:10.1021/acsami.1c23251
  • Wang S, Xu B, Huo W, et al. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl Catal B. 2022;313:121472. doi:10.1016/j.apcatb.2022.121472
  • Svane KL, Rossmeisl J. Theoretical optimization of compositions of high-entropy oxides for the oxygen evolution reaction. Angew Chem Int Ed. 2022;61:e2022011. doi:10.1002/anie.202201146
  • Li M, Ye KH, Qiu W, et al. Heterogeneity between and within single hematite nanorods as electrocatalysts for oxygen evolution reaction. J Am Chem Soc. 2022;144:5247–5252. doi:10.1021/jacs.2c00506
  • Zhang L, Cai W, Bao N, et al. Implanting an electron donor to enlarge the d–p hybridization of high-entropy (oxy)hydroxide: a novel design to boost oxygen evolution. Adv Mater. 2022;34:2110511. doi:10.1002/adma.202110511
  • Tang L, Yang Y, Guo H, et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv Funct Mater. 2022;32:2112157. doi:10.1002/adfm.202112157
  • Batchelor T, Löffler T, Xiao B, et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew Chem Int Ed. 2021;60:6932–6937. doi:10.1002/anie.202014374
  • Saidi WA. Optimizing the catalytic activity of Pd-based multinary alloys toward oxygen reduction reaction. J Phys Chem Lett. 2022;13:1042–1048. doi:10.1021/acs.jpclett.1c04128
  • Lu ZL, Chen ZW, Singh CV. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter. 2020;3:1318–1333. doi:10.1016/j.matt.2020.07.029
  • Clausen CM, Nielsen MLS, Pedersen JK, et al. Ab initio to activity: machine learning-assisted optimization of high-entropy alloy catalytic activity. High Entrop Alloy Mater. 2022. doi:10.1007/s44210-022-00006-4
  • Jin Z, Lyu J, Zhao Y, et al. Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-air batteries. ACS Mater Lett. 2020;2:1698–1706. doi:10.1021/acsmaterialslett.0c00434
  • Batchelor T, Pedersen J, Winther S, et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2018;3:834–845. doi:10.1016/j.joule.2018.12.015
  • Xie P, Yao Y, Huang Z, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun. 2019;10:4011. doi:10.1038/s41467-019-11848-9
  • Saidi WA, Shadid W, Veser G. Optimization of high-entropy alloy catalyst for ammonia decomposition and ammonia synthesis. J Phys Chem Lett. 2021;12:5185–5192. doi:10.1021/acs.jpclett.1c01242
  • Ahmed M, Arachchige L, Su Z, et al. Nitrogenase-inspired atomically dispersed Fe–S–C linkages for improved electrochemical reduction of dinitrogen to ammonia. ACS Catal. 2022;12:1443–1451. doi:10.1021/acscatal.1c05174
  • Liu C, Wang Q, Guo J, et al. Formation of a complex active center by Ba2RuH6 for nondissociative dinitrogen activation and ammonia formation. ACS Catal. 2022;12:4194–4202. doi:10.1021/acscatal.2c00180
  • Majumder M, Saini H, Dedek I, et al. Rational design of graphene derivatives for electrochemical reduction of nitrogen to ammonia. ACS Nano. 2021;15:17275–17298. doi:10.1021/acsnano.1c08455
  • Sun Y, Yu L, Xu S, et al. Battery-driven N2 electrolysis enabled by high-entropy catalysts: from theoretical prediction to prototype model. Small. 2022;18:2106358. doi:10.1002/smll.202106358
  • Zaza L, Rossi K, Buonsanti R. Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 2022;7:1284–1291. doi:10.1021/acsenergylett.2c00035
  • Cavin J, Ahmadiparidari A, Majidi L, et al. 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv Mater. 2021;33:2100347. doi:10.1002/adma.202100347
  • Mori K, Hashimoto N, Kamiuchi N, et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat Commun. 2021;12:3884. doi:10.1038/s41467-021-24228-z
  • Chen W, Luo SP, Sun MZ, et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv Mater. 2022;34:2206. doi:10.1002/adma.202206276
  • Fan LF, Ji YX, Wang GX, et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J Am Chem Soc. 2022;144:7224–7235. doi:10.1021/jacs.1c13740
  • Mushiana T, Khan M, Abdullah MI, et al. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 2022;15:5014–5023. doi:10.1007/s12274-022-4186-9
  • Chiu CT, Teng YJ, Dai BH, et al. Novel high-entropy ceramic/carbon composite materials for the decomposition of organic pollutants. Mater Chem Phys. 2022;275:125274. doi:10.1016/j.matchemphys.2021.125274
  • Liu P, Rodriguez JA. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc. 2005;127:14871–14878. doi:10.1021/ja0540019
  • Roy A, Debnath B, Sahoo R, et al. Enhanced catalytic activity of Ag/Rh bimetallic nanomaterial: evidence of an ensemble effect. J Phys Chem C. 2016;120:5457–5467. doi:10.1021/acs.jpcc.5b11018
  • Wang SQ, Huo WY, Feng HC, et al. Controlled self-assembly of hollow core-shell FeMn/CoNi Prussian blue analogs with boosted electrocatalytic activity. Small. 2022;18:2203713. doi:10.1002/smll.202203713
  • Sorkin V, Tan TL, Yu ZG, et al. High-throughput calculations based on the small set of ordered structures method for non-equimolar high entropy alloys. Comput Mater Sci. 2021;188:110213. doi:10.1016/j.commatsci.2020.110213
  • Sauceda D, Singh P, Ouyang G, et al. High throughput exploration of the oxidation landscape in high entropy alloys. Mater Horizons. 2022;9:2644–2663. doi:10.1039/D2MH00729K
  • Huang E-W, Lee W-J, Singh SS, et al. Machine-learning and high-throughput studies for high-entropy materials. Mater Sci Eng R. 2022;147:100645. doi:10.1016/j.mser.2021.100645
  • Sorkin V, Chen S, Tan TK, et al. First-principles-based high-throughput computation for high entropy alloys with short range order. J Alloy Comp. 2021;882:160776. doi:10.1016/j.jallcom.2021.160776
  • Tomboc GM, Zhang XD, Choi S, et al. Stabilization, characterization, and electrochemical applications of high-entropy oxides: critical assessment of crystal phase–properties relationship. Adv Funct Mater. 2022;32:2205142. doi:10.1002/adfm.202205142
  • Jiang B, Bridge CA, Unocic RR, et al. Probing the local site disorder and distortion in pyrochlore high-entropy oxides. J Am Chem Soc. 2021;143:4193–4204. doi:10.1021/jacs.0c10739
  • Seol JB, Ko WS, Sohn SS, et al. Mechanically derived short-range order and its impact on the multi-principal-element alloys. Nat Commun. 2022;13:6766. doi:10.1038/s41467-022-34470-8
  • Zhang RP, Zhao ST, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature. 2020;581:283–287. doi:10.1038/s41586-020-2275-z