1,203
Views
0
CrossRef citations to date
0
Altmetric
Report

Quaternary diborides—improving the oxidation resistance of TiB2 ± z coatings by disilicide alloying

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 733-741 | Received 27 Mar 2023, Published online: 26 Jun 2023

References

  • Fahrenholtz WG, Hilmas GE. Ultra-high temperature ceramics: materials for extreme environments. Scr Mater. 2017;129:94–99. doi:10.1016/j.scriptamat.2016.10.018
  • Mitterer C. Borides in thin film technology. J Solid State Chem. 1997;133(1):279–291. doi:10.1006/jssc.1997.7456
  • Chen JS, Wang JL. Diffusion barrier properties of sputtered TiB2 between Cu and Si. J Electrochem Soc. 2000;147(5):1940. doi:10.1149/1.1393462
  • Choi CS, Ruggles GA, Shah AS, et al. Stability of TiB2 as a diffusion barrier on silicon. J Electrochem Soc. 1991;138(10):3062–3067. doi:10.1149/1.2085367
  • Mayrhofer PH, Mitterer C, Wen JG, et al. Self-organized nanocolumnar structure in superhard TiB2 thin films. Appl Phys Lett. 2005;86(13):131909. doi:10.1063/1.1887824
  • Berger M, Hogmark S. Evaluation of TiB2 coatings in sliding contact against aluminium. Surf Coat Technol. 2002;149(1):14–20. doi:10.1016/S0257-8972(01)01361-5
  • Polyakov MN, Morstein M, Maeder X, et al. Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering. Surf Coat Technol. 2019;368:88–96. doi:10.1016/j.surfcoat.2019.04.042
  • Fuger C, Hahn R, Hirle A, et al. Revisiting the origins of super-hardness in TiB2+z thin films – impact of growth conditions and anisotropy. Surf Coat Technol. 2022;446:128806. doi:10.1016/j.surfcoat.2022.128806
  • Yao Y, Zhang Z, Jiao L. Development strategies in transition metal borides for electrochemical water splitting. Energy Environ Mater. 2022;5(2):470–485. doi:10.1002/eem2.12198
  • Munro RG. Material properties of titanium diboride. J Res Natl Inst Stand Technol. 2000;105(5):709–720. doi:10.6028/jres.105.057
  • Chen X, Wang H-T, Ji G-C, et al. Microstructure and properties of TiB2–Ni coatings with different binder phase contents deposited by HVOF spray process. Rare Met. 2022;41(4):1385–1393. doi:10.1007/s12598-015-0528-z
  • Wu Y, Lu Y, Duan Y, et al. Microstructure and wear properties of powder-pack borided Ti–5Al–2.5Sn alloy. J Mater Res Technol. 2023;23:4032–4043. doi:10.1016/j.jmrt.2023.02.052
  • Feng Z, Duan Y, Cao Y, et al. Corrosion properties of ceramic coating on pure titanium by pack boronizing with Nd2O3. Ceram Int. 2023;49(10):15101–15113. doi:10.1016/j.ceramint.2023.01.093
  • Hu L-F, Li J, Lv Y-H, et al. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition. Rare Met. 2020;39(4):436–447. doi:10.1007/s12598-017-0973-y
  • Fuger C, Hahn R, Hirle A, et al. Tissue phase affected fracture toughness of nano-columnar TiB2 + z thin films. Mater Res Lett. 2023;11(8):613–622. doi:10.1080/21663831.2023.2204120
  • Thörnberg J, Bakhit B, Palisaitis J, et al. Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films. Surf Coat Technol. 2021;420:127353. doi:10.1016/j.surfcoat.2021.127353
  • Dorri S, Palisaitis J, Greczynski G, et al. Oxidation kinetics of overstoichiometric TiB2 thin films grown by DC magnetron sputtering. Corros Sci. 2022;206:110493. doi:10.1016/j.corsci.2022.110493
  • Bakhit B, Palisaitis J, Thörnberg J, et al. Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al. Acta Mater. 2020;196:677–689. doi:10.1016/j.actamat.2020.07.025
  • Tampieri A, Bellosi A. Oxidation of monolithic TiB2 and of Al2O3-TiB2 composite. J Mater Sci. 1993;28(3):649–653. doi:10.1007/BF01151240
  • Andrievskii RA, Shul’ga YM, Volkova LS, et al. Oxidation behavior of TiB2 micro- and nanoparticles. Inorg Mater. 2016;52(7):686–693. doi:10.1134/S0020168516070013
  • Cai X, Ding S, Wen K, et al. Unmasking the anomalous rapid oxidation of refractory TiB2 at low temperatures. J Eur Ceram Soc. 2021;41(10):5100–5108. doi:10.1016/j.jeurceramsoc.2021.04.011
  • Huang X, Sun S, Tu G. Investigation of mechanical properties and oxidation resistance of CVD TiB2 ceramic coating on molybdenum. J Mater Res Technol. 2020;9(1):282–290. doi:10.1016/j.jmrt.2019.10.056
  • Raju GB, Basu B, Suri AK. Oxidation kinetics and mechanisms of hot-pressed TiB2–MoSi2 composites. J Am Ceram Soc. 2008;91(10):3320–3327. doi:10.1111/j.1551-2916.2008.02656.x
  • Parthasarathy TA, Rapp RA, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007;55(17):5999–6010. doi:10.1016/j.actamat.2007.07.027
  • Kashani N, Mráz AH, Holzapfel S, et al. Synthesis and oxidation behavior of Ti0.35Al0.65By (y=1.7–2.4) coatings. Surf Coat Technol. 2022;442:128190). doi:10.1016/j.surfcoat.2022.128190
  • Thörnberg J, Mráz S, Palisaitis J, et al. Oxidation resistance and mechanical properties of sputter-deposited Ti0.9Al0.1B2-y thin films. Surf Coat Technol. 2022;442:128187. doi:10.1016/j.surfcoat.2022.128187
  • Glechner T, Oemer HG, Wojcik T, et al. Influence of Si on the oxidation behavior of TM-Si-B2±z coatings (TM = Ti, Cr, Hf, Ta, W). Surf Coat Technol. 2022;434:128178. doi:10.1016/j.surfcoat.2022.128178
  • Grančič B, Mikula M, Roch T, et al. Effect of Si addition on mechanical properties and high temperature oxidation resistance of Ti–B–Si hard coatings. Surf Coat Technol. 2014;240:48–54. doi:10.1016/j.surfcoat.2013.12.011
  • Raju GB, Biswas K, Basu B. Microstructural characterization and isothermal oxidation behavior of hot-pressed TiB2–10wt.% TiSi2 composite. Scr Mater. 2009;61(1):104–107. doi:10.1016/j.scriptamat.2009.03.027
  • Silvestroni L, Meriggi G, Sciti D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros Sci. 2014;83:281–291. doi:10.1016/j.corsci.2014.02.026
  • Silvestroni L, Stricker K, Sciti D, et al. Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures. Acta Mater. 2018;151:216–228. doi:10.1016/j.actamat.2018.03.042
  • Fahrenholtz WG. Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region. J Am Ceram Soc. 2007;90(1):143–148. doi:10.1111/j.1551-2916.2006.01329.x
  • Astapov AN, Pogozhev YS, Prokofiev MV, et al. Kinetics and mechanism of the oxidation of ZrSi2-MoSi2-ZrB2 ceramics in air at temperatures up to 1400°C. Int J Heat Mass Transf. 2019;140:12–20. doi:10.1016/j.ijheatmasstransfer.2019.05.100
  • Cao X, Wang B, Ma X, et al. Oxidation behavior of melt-infiltrated SiC–TiB2 ceramic composites at 500–1300°C in air. Ceram Int. 2021;47(7, Part A):9881–9887. doi:10.1016/j.ceramint.2020.12.130
  • Kiryukhantsev-Korneev P, Sytchenko A, Pogozhev Y, et al. Structure and properties of Zr-Mo-Si-B-(N) hard coatings obtained by d.c. magnetron sputtering of ZrB2-MoSi2 target. Materials (Basel). 2021;14(8). doi:10.3390/ma14081932
  • Niu Y, Wang H, Liu Z, et al. Microstructure evolution of ZrB2–MoSi2 composite coatings at middle and high temperatures. Surf Coat Technol. 2015;273:30–38. doi:10.1016/j.surfcoat.2015.03.029
  • Ström P, Primetzhofer D. Ion beam tools for nondestructive in-situ and in-operando composition analysis and modification of materials at the Tandem Laboratory in Uppsala. J Instrum. 2022;17(04):P04011. doi:10.1088/1748-0221/17/04/P04011
  • Arstila K, Julin J, Laitinen MI, et al. Potku – New analysis software for heavy ion elastic recoil detection analysis. Nucl Instrum Methods Phys Res Sect B. 2014;331:34–41. doi:10.1016/j.nimb.2014.02.016
  • Mayer M. SIMNRA user's guide. 1997.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583. doi:10.1557/JMR.1992.1564
  • Shein IR, Ivanovskii AL. Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations. J Phys: Condens Matter. 2008;20(41):415218. doi:10.1088/0953-8984/20/41/415218
  • Bakhit B, Palisaitis J, Wu Z, et al. Age hardening in superhard ZrB2-rich Zr1-xTaxBy thin films. Scr Mater. 2021;191:120–125. doi:10.1016/j.scriptamat.2020.09.026
  • Fuger C, Moraes V, Hahn R, et al. Influence of Tantalum on phase stability and mechanical properties of WB2. MRS Commun. 2019;9(1):375–380. doi:10.1557/mrc.2019.5
  • Berztiss DA, Cerchiara RR, Gulbransen EA, et al. Oxidation of MoSi2 and comparison with other silicide materials. Mater Sci Eng A. 1992;155(1):165–181. doi:10.1016/0921-5093(92)90324-T
  • Bahr A, Richter S, Hahn R, et al. Oxidation behaviour and mechanical properties of sputter-deposited TMSi2 coatings (TM = Mo, Ta, Nb). J Alloys Compd. 2023;931:167532. doi:10.1016/j.jallcom.2022.167532
  • Shewmon PG. Transformations in metals. New York: McGraw-Hill; 1969.