894
Views
0
CrossRef citations to date
0
Altmetric
Report

Giant hardening and formation of nanograined supersaturated solid solution in Al–Zn system

, , , , &
Pages 764-771 | Received 17 May 2023, Published online: 12 Jul 2023

References

  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782–817. doi:10.1016/j.actamat.2012.10.038
  • Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater. 2004;3:511–516. doi:10.1038/nmat1180
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi:10.1016/S0079-6425(99)00007-9
  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Lond Sect B. 1951;64:747–753. doi:10.1088/0370-1301/64/9/303
  • Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science. 2013;342:337–340. doi:10.1126/science.1242578
  • Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scr Mater. 2006;54:1913–1918. doi:10.1016/j.scriptamat.2006.02.022
  • Xu W, Liu XC, Li XY, et al. Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy. Acta Mater. 2020;182:207–214. doi:10.1016/j.actamat.2019.10.036
  • Kormout KS, Pippan R, Bachmaier A. Deformation-Induced supersaturation in immiscible material systems during high-pressure torsion. Adv Eng Mater. 2017;19:1600675. doi:10.1002/adem.201600675
  • Mohammadi A, Enikeev NA, Murashkin MY, et al. Developing age-hardenable Al-Zr alloy by ultra-severe plastic deformation: significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Mater. 2021;203:116503. doi:10.1016/j.actamat.2020.116503
  • Sauvage X, Cuvilly F, Russell A, et al. Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum. Mat Sci Eng A. 2020;798:140108. doi:10.1016/j.msea.2020.140108
  • Edalati K, Daio T, Lee S, et al. High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure torsion and annealing: significance of elemental decomposition and supersaturation. Acta Mater. 2014;80:149–158. doi:10.1016/j.actamat.2014.07.065
  • Edalati K, Horita Z. Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mat Sci Eng A. 2011;528:7514–7523. doi:10.1016/j.msea.2011.06.080
  • Zhang NX, Chinh NQ, Kawasaki M, et al. Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion. Mat Sci Eng A. 2016;666:350–359. doi:10.1016/j.msea.2016.04.058
  • Alhamidi A, Edalati K, Horita Z, et al. Softening by severe plastic deformation and hardening by annealing of aluminum–zinc alloy: significance of elemental and spinodal decompositions. Mat Sci Eng A. 2014;610:17–27. doi:10.1016/j.msea.2014.05.026
  • Mazilkin A, Straumal B, Rabkin E, et al. Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation. Acta Mater. 2006;54:3933–3939. doi:10.1016/j.actamat.2006.04.025
  • Okamoto H, Massalski T. Binary alloy phase diagrams. ASM International; 1990.
  • Borodachenkova M, Barlat F, Wen W, et al. A microstructure-based model for describing the material properties of Al–Zn alloys during high pressure torsion. Int J Plast. 2015;68:150–163. doi:10.1016/j.ijplas.2014.01.009
  • Song ZZ, Niu RM, Cui XY, et al. Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al-Zn alloy. Scr Mater. 2022;210:114423. doi:10.1016/j.scriptamat.2021.114423
  • Straumal BB, Baretzky B, Mazilkin AA, et al. Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater. 2004;52:4469–4478. doi:10.1016/j.actamat.2004.06.006
  • Straumal B, Valiev R, Kogtenkova O, et al. Thermal evolution and grain boundary phase transformations in severely deformed nanograined Al–Zn alloys. Acta Mater. 2008;56:6123–6131. doi:10.1016/j.actamat.2008.08.021
  • Mazilkin AA, Straumal BB, Borodachenkova MV, et al. Gradual softening of Al–Zn alloys during high-pressure torsion. Mater Lett. 2012;84:63–65. doi:10.1016/j.matlet.2012.06.026
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1:16019. doi:10.1038/natrevmats.2016.19
  • Schuh CA, Lu K. Stability of nanocrystalline metals: the role of grain-boundary chemistry and structure. Mrs Bull. 2021;46:225–235. doi:10.1557/s43577-021-00055-x
  • Chookajorn T, Murdoch HA, Schuh CA. Design of stable nanocrystalline alloys. Science. 2012;337:951–954. doi:10.1126/science.1224737
  • Zhou X, Li XY, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size. Science. 2018;360:526–530. doi:10.1126/science.aar6941
  • Wang B, Xu W, Zhou X, et al. Formation of stable equiaxial nanograined Al via combined plastic deformation. Scr Mater. 2021;203:114054. doi:10.1016/j.scriptamat.2021.114054
  • Fang L, Zhong Y, Wang B, et al. Ultrahard and super-stable pure aluminum with Schwarz crystal structure. Mater Res Lett. 2023;11:662–669. doi:10.1080/21663831.2023.2213729
  • Xu W, Zhang B, Du K, et al. Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries. Acta Mater. 2022;226:117640. doi:10.1016/j.actamat.2022.117640
  • Xu W, Zhang B, Li XY, et al. Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al-Mg alloys. Science. 2021;373:683–687. doi:10.1126/science.abh0700
  • Cahn JW. Hardening by spinodal decomposition. Acta Metall. 1963;11:1275–1282. doi:10.1016/0001-6160(63)90022-1
  • Xu W, Zhong Y, Li X, et al. Stabilizing supersaturation with extreme grain refinement in spinodal aluminum alloys. Adv Mater. 2023: e2303650. doi:10.1002/adma.202303650
  • Zhang Y, Tao NR, Lu K. Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation. Acta Mater. 2011;59:6048–6058. doi:10.1016/j.actamat.2011.06.013
  • Chinh NQ, Valiev RZ, Sauvage X, et al. Grain boundary phenomena in an ultrafine-grained Al-Zn alloy with improved mechanical behavior for micro-devices. Adv Eng Mater. 2014;16:1000–1009. doi:10.1002/adem.201300450
  • Edalati K, Horita Z, Valiev RZ. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci Rep. 2018;8:6740. doi:10.1038/s41598-018-25140-1
  • Liu CY, Ma MZ, Liu RP, et al. Evaluation of microstructure and mechanical properties of Al–Zn alloy during rolling. Mat Sci Eng A. 2016;654:436–441. doi:10.1016/j.msea.2015.12.073
  • Sauvage X, Murashkin MY, Straumal BB, et al. Ultrafine grained structures resulting from SPD-induced phase transformation in Al-Zn alloys. Adv Eng Mater. 2015;17:1821–1827. doi:10.1002/adem.201500151
  • Straumal BB, Sauvage X, Baretzky B, et al. Grain boundary films in Al–Zn alloys after high pressure torsion. Scr Mater. 2014;70:59–62. doi:10.1016/j.scriptamat.2013.09.019
  • Han ZX, Han Z, Luo ZP, et al. Plastic deformation induced formation of supersaturated solid solution nanostructure in a dual-phase Cu-Ag alloy. J Alloys Compd. 2022;903:163903. doi:10.1016/j.jallcom.2022.163903
  • Kormout KS, Ghosh P, Maier-Kiener V, et al. Deformation mechanisms during severe plastic deformation of a Cu Ag composite. J Alloys Compd. 2017;695:2285–2294. doi:10.1016/j.jallcom.2016.11.085
  • Murayama M. Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing. Acta Mater. 2001;49:21–29. doi:10.1016/S1359-6454(00)00308-6
  • Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater. 2009;57:5254–5263. doi:10.1016/j.actamat.2009.07.028
  • Bellon P, Averback RS. Nonequilibrium roughening of interfaces in crystals under shear: application to ball milling. Phys Rev Lett. 1995;74:1819–1822. doi:10.1103/PhysRevLett.74.1819
  • Murdoch HA, Schuh CA. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J Mater Res. 2013;28:2154–2163. doi:10.1557/jmr.2013.211
  • Vo NQ, Odunuga S, Bellon P, et al. Forced chemical mixing in immiscible alloys during severe plastic deformation at elevated temperatures. Acta Mater. 2009;57:3012–3019. doi:10.1016/j.actamat.2009.03.007
  • Wang M, Vo NQ, Campion M, et al. Forced atomic mixing during severe plastic deformation: chemical interactions and kinetically driven segregation. Acta Mater. 2014;66:1–11. doi:10.1016/j.actamat.2013.11.066
  • Telang A, Gill AS, Kumar M, et al. Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking. Acta Mater. 2016;113:180–193. doi:10.1016/j.actamat.2016.05.009
  • Song Z, Niu R, Cui X, et al. Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys. Acta Mater. 2023;246:118671. doi:10.1016/j.actamat.2023.118671
  • Chinh NQ, Jenei P, Gubicza J, et al. Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al–Zn alloys processed by high-pressure torsion. Mater Lett. 2017;186:334–337. doi:10.1016/j.matlet.2016.09.114
  • Baris A, Chinh NQ, Valiev RZ, et al. Microstructure decomposition and unique mechanical properties in an ultrafine-grained Al-Zn alloy processed by high-pressure torsion. Kovove Mater. 2016;53:251–258. doi:10.4149/km_2015_4_251
  • Valiev RZ, Murashkin MY, Kilmametov A, et al. Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J Mater Sci. 2010;45:4718–4724. doi:10.1007/s10853-010-4588-z
  • Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004;51:801–806. doi:10.1016/j.scriptamat.2004.06.002
  • Kamikawa N, Huang X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009;57:4198–4208. doi:10.1016/j.actamat.2009.05.017
  • Hansen N. The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall. 1977;25:863–869. doi:10.1016/0001-6160(77)90171-7
  • Dixit M, Mishra RS, Sankaran KK. Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mat Sci Eng A. 2008;478:163–172. doi:10.1016/j.msea.2007.05.116