2,072
Views
1
CrossRef citations to date
0
Altmetric
Report

Developing high-strength and ductile Mg-Gd-Y-Zn-Zr alloy sheet via bimodal grain structure coupling with heterogeneously-distributed precipitates

, , , , , , , & show all
Pages 772-780 | Received 31 May 2023, Published online: 14 Jul 2023

References

  • Pan HC, Xie DS, Li JR, et al. Development of novel lightweight and cost-effective Mg–Ce–Al wrought alloy with high strength. Mater Res Lett. 2021;9:329–335. doi:10.1080/21663831.2021.1918776
  • Ma X, Zha M, Wang SQ, et al. A rolled Mg−8Al−0.5Zn−0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries. J Magnes Alloys. 2022;10:2889–2900. doi:10.1016/j.jma.2021.12.008
  • Wang HY, Xia N, Bu RY, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys. Acta Metall Sin 2021;57:1429–1437. doi:10.11900/0412.1961.2021.00347
  • Guan K, Egami M, Egusa D, et al. Short-range order clusters in the long-period stacking/order phases with an intrinsic-I type stacking fault in Mg-Co-Y alloys. Scripta Mater. 2022;207:114282. doi:10.1016/j.scriptamat.2021.114282
  • Jian WW, Cheng GM, Xu WZ, et al. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater Res Lett. 2013;1:61–66. doi:10.1080/21663831.2013.765927
  • Xu C, Nakata T, Qiao XG, et al. Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates. Sci Rep. 2017;7:43391. doi:10.1038/srep43391
  • Li RG, Yan Y, Pan HC, et al. Achieving a high-strength binary Mg–15Gd alloy by nano substructure with Gd segregation and nano clusters. Mater Res Lett. 2022;10:682–689. doi:10.1080/21663831.2022.2086834
  • Zhou XJ, Xiong WY, Zeng G, et al. Combined effects of LPSO orientation and α-Mg texture on tensile anisotropy of an extruded Mg-Gd-Y-Zn-Zr alloy. Mater Sci Eng A. 2021;805:140596. doi:10.1016/j.msea.2020.140596
  • Nie JF. Precipitation and hardening in magnesium alloys. Metall Mater Trans A. 2012;43:3891–3939. doi:10.1007/s11661-012-1217-2
  • Wei XX, Jin L, Liu CL, et al. Effect of pack-forging on microstructure and properties of Mg-Gd-Y-Zn-Zr alloy. Mater Sci Eng A. 2021;802:140674. doi:10.1016/j.msea.2020.140674
  • Xu C, Zheng MY, Xu SW, et al. Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Mater Sci Eng A. 2012;547:93–98. doi:10.1016/j.msea.2012.03.087
  • Zhu YT, Wu XL. Heterostructured materials. Prog Mater Sci. 2023;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Wang T, Zha M, Du C, et al. High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy. Mater Res Lett. 2023;11:187–195. doi:10.1080/21663831.2022.2133976
  • Li YK, Zha M, Jia HL, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles. J Magnes Alloys. 2021;9:1556–1566. doi:10.1016/j.jma.2021.01.008
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532. doi:10.1080/21663831.2017.1343208
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398. doi:10.1080/21663831.2019.1616331
  • Xu C, Fan GH, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure. Metall Mater Trans A. 2018;49:1931–1947. doi:10.1007/s11661-018-4507-5
  • Yu ZJ, Xu C, Meng J, et al. Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg-Gd-Y-(Nd/Zn)-Zr alloys. Mater Sci Eng A. 2019;762:138080. doi:10.1016/j.msea.2019.138080
  • Cheng RS, Li M, Du S, et al. Effects of single-pass large-strain rolling on microstructure and mechanical properties of Mg-Al-Ca alloy sheet. Mater Sci Eng A. 2020;786:139332. doi:10.1016/j.msea.2020.139332
  • Xu C, Xu SW, Zheng MY, et al. Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J Alloys Compd. 2012;524:46–52. doi:10.1016/j.jallcom.2012.02.050
  • Li YK, Zha M, Rong J, et al. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling. J Mater Sci Technol. 2021;88:215–225. doi:10.1016/j.jmst.2021.01.050
  • Li RG, Li HR, Pan HC, et al. Achieving exceptionally high strength in binary Mg-13Gd alloy by strong texture and substantial precipitates. Scripta Mater. 2021;193:142–146. doi:10.1016/j.scriptamat.2020.10.052
  • Kuang J, Zhao X, Du X, et al. Ductilizing Al-Mn strips via gradient texture. Mater Res Lett. 2023;11:430–438. doi:10.1080/21663831.2023.2178861
  • Álvarez-Leal M, Orozco-Caballero A, Carreño F, et al. Superplasticity in a commercially extruded ZK30 magnesium alloy. Mater Sci Eng A. 2018;710:240–244. doi:10.1016/j.msea.2017.10.093
  • Hua ZM, Min Z, Meng ZY, et al. Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy. Mater Res Lett. 2022;10:21–28. doi:10.1080/21663831.2021.2009585
  • Zheng J, Chen Z, Yan ZM, et al. Preparation of ultra-high strength Mg-Gd-Y-Zn-Zr alloy by pre-ageing treatment prior to extrusion. J Alloys Compd. 2022;894:162490. doi:10.1016/j.jallcom.2021.162490
  • Ma ZD, Li G, Peng Q, et al. Microstructural evolution and enhanced mechanical properties of Mg–Gd–Y–Zn–Zr alloy via centrifugal casting, ring-rolling and aging. J Magnes Alloys. 2020;10:119–128. doi:10.1016/j.jma.2020.11.009
  • Wei XX, Jin L, Dong S, et al. Effect of Zn/(Gd+Y) ratio on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. Mater Charact. 2020;169:110670. doi:10.1016/j.matchar.2020.110670
  • Wang N, Yang Q, Li XL, et al. Microstructures and mechanical properties of a Mg–9Gd−3Y−0.6Zn−0.4Zr (wt.%) alloy modified by Y-rich misch metal. Mater Sci Eng A. 2021;806:140609. doi:10.1016/j.msea.2020.140609
  • Jin XZ, Xu WC, Shan DB, et al. Mechanism of high-strength and ductility of Mg-RE alloy fabricated by low-temperature extrusion and aging treatment. Mater Design. 2021;199:109384. doi:10.1016/j.matdes.2020.109384
  • Xue ZY, Ren YJ, Luo WB, et al. Effect of aging treatment on the precipitation behavior and mechanical properties of Mg-9Gd-3Y-1.5Zn-0.5Zr alloy. J Mater Eng Perform. 2017;26:5963–5972. doi:10.1007/s11665-017-2755-y
  • Liu X, Zhang ZQ, Hu WY, et al. Effects of extrusion speed on the microstructure and mechanical properties of Mg-9Gd-3Y-1.5Zn-0.8Zr alloy. J Mater Sci Technol. 2016;32:313–319. doi:10.1016/j.jmst.2015.12.004
  • Xu C, Zheng MY, Wu K, et al. Influence of rolling temperature on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Mater Sci Eng A. 2013;559:615–622. doi:10.1016/j.msea.2012.08.151
  • Tong LB, Chu JH, Sun WT, et al. Achieving an ultra-high strength and moderate ductility in Mg–Gd–Y–Zn–Zr alloy via a decreased-temperature multi-directional forging. Mater Charact. 2021;171:110804. doi:10.1016/j.matchar.2020.110804
  • Yan Z, Zhang ZM, Li XB, et al. A novel severe plastic deformation method and its effect on microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. J Alloys Compd. 2020;822:153698. doi:10.1016/j.jallcom.2020.153698
  • Xu C, Zheng MY, Xu SW, et al. Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing. Mater Sci Eng A. 2015;643:137–141. doi:10.1016/j.msea.2015.07.032
  • Zheng J, Chen Z, Yan ZM, et al. An alternating ageing-annealing process for enhancing strength and ductility of a Mg-Gd-Y-Zn-Zr alloy. Mater Sci Eng A. 2021;828:142103. doi:10.1016/j.msea.2021.142103
  • Sun C, Liu H, Wang XJ, et al. Microstructure evolution during superplastic deformation process and its impact on superplastic behavior of a Mg-Gd-Y-Zn-Zr alloy. Mater Charact. 2021;172:110879. doi:10.1016/j.matchar.2021.110879
  • Shao JB, Chen ZY, Chen T, et al. Texture evolution, deformation mechanism and mechanical properties of the hot rolled Mg-Gd-Y-Zn-Zr alloy containing LPSO phase. Mater Sci Eng A. 2018;731:479–486. doi:10.1016/j.msea.2018.06.062
  • Li B, Teng BG, Wang ED. Effects of accumulative rolling reduction on the microstructure characteristic and mechanical properties of Mg-Gd-Y-Zn-Zr sheets processed by hot rolling. Mater Sci Eng A. 2019;765:138317. doi:10.1016/j.msea.2019.138317
  • Li B, Hou XW, Teng BG. Effects of friction stir process and subsequent aging treatment on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. Mater Charact. 2019;155:109832. doi:10.1016/j.matchar.2019.109832
  • Yan ZM, Li XB, Zheng J, et al. Microstructure evolution, texture and mechanical properties of a Mg–Gd–Y–Zn–Zr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity: the influence of passes and processing route. J Magnes Alloys. 2021;9:964–982. doi:10.1016/j.jma.2020.06.016
  • Hidalgo-Manrique P, Robson JD, Pérez-Prado TM. Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: a quantitative study. Acta Mater. 2017;124:456–467. doi:10.1016/j.actamat.2016.11.019
  • Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 2012;60:3011–3021. doi:10.1016/j.actamat.2012.02.006
  • Li JL, Wu D, Chen RS, et al. Anomalous effects of strain rate on the room-temperature ductility of a cast Mg-Gd-Y-Zr alloy. Acta Mater. 2018;159:31–45. doi:10.1016/j.actamat.2018.08.013
  • Zhang H, Wang HY, Wang JG, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys. J Alloys Compd. 2019;780:312–317. doi:10.1016/j.jallcom.2018.11.229
  • Xia XS, Zhang K, Ma ML, et al. Microstructures and strengthening mechanisms of Mg-8.2Gd-4.6Y-1.5Zn-0.4Zr alloy containing LPSO, β′ and γ type phases. J Rare Earth. 2020;38:1119–1125. doi:10.1016/j.jre.2020.05.012