1,068
Views
0
CrossRef citations to date
0
Altmetric
Original reports

In-situ atomic-scale observation of dislocation and deformation twin interaction in FeMnCoCr high-entropy alloy

, , , , , , , , & show all
Pages 1040-1047 | Received 14 Jun 2023, Published online: 09 Nov 2023

References

  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515–534. doi:10.1038/s41578-019-0121-4
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081
  • Li Z, Zhao S, Ritchie RO, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296–345. doi:10.1016/j.pmatsci.2018.12.003
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi:10.1016/j.pmatsci.2013.10.001
  • George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474. doi:10.1016/j.actamat.2019.12.015
  • Park JM, Yang DC, Kim HJ, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening. Mater Res Lett. 2021;9(7):315–321. doi:10.1080/21663831.2021.1913768
  • He ZF, Jia N, Wang HW, et al. The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy. Mater Sci Eng, A. 2020;776:138982. doi:10.1016/j.msea.2020.138982
  • He ZF, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Mater Sci Eng, A. 2019;759:437–447. doi:10.1016/j.msea.2019.05.057
  • Su J, Raabe D, Li Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 2019;163:40–54. doi:10.1016/j.actamat.2018.10.017
  • Xu N, Yang Z, Mu X, et al. Effect of Al addition on the microstructures and deformation behaviors of non-equiatomic FeMnCoCr metastable high entropy alloys. Appl Phys Lett. 2021;119(26):261902. doi:10.1063/5.0069518
  • Qi L, Huang XD, Zhang AP, et al. Martensitic transformation induced dislocation walls in Fe42Mn38Co10Cr10 high-entropy alloy. Scr Mater. 2021;201:113929. doi:10.1016/j.scriptamat.2021.113929
  • Niu P, Li R, Fan Z, et al. Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: microstructure evolution, mechanical properties and deformation mechanisms. Mater Sci Eng, A. 2021;814:141264. doi:10.1016/j.msea.2021.141264
  • Wei S, Kim J, Tasan CC. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys. Acta Mater. 2019;168:76–86. doi:10.1016/j.actamat.2019.01.036
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534(7606):227–230. doi:10.1038/nature17981
  • Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133. doi:10.1016/j.actamat.2015.04.014
  • Yang S, Yang Y. Thermodynamics-kinetics of twinning/martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during adiabatic shearing. Scr Mater. 2020;181:115–120. doi:10.1016/j.scriptamat.2020.02.024
  • Li S, Li L, Souami A, et al. In-situ observation of deformation twin associated sub-grain boundary formation in copper single crystal under bending. Mater Res Lett. 2022;10(7):488–495. doi:10.1080/21663831.2022.2057201
  • Picak S, Liu J, Hayrettin C, et al. Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip. Acta Mater. 2019;181:555–569. doi:10.1016/j.actamat.2019.09.048
  • Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science. 2022;375(6586):1261–1265. doi:10.1126/science.abm2612
  • Zhang Z, Mao MM, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6(1):10143. doi:10.1038/ncomms10143
  • Hirth JP, Lothe J, Mura T. Theory of dislocations (2nd ed.). J Appl Mech. 1983;50(2):476–477.
  • Arzaghi M, Beausir B, Tóth LS. Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear. Acta Mater. 2009;57(8):2440–2453. doi:10.1016/j.actamat.2009.01.041
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57(1):1–62. doi:10.1016/j.pmatsci.2011.05.001
  • Guo Y, Wang Z, Zhang B, et al. Twin thickness and dislocation interactions affect the incoherent-twin boundary phase in face-centered cubic metals. Cell Rep Phys Sci. 2022;3(3):100736. doi:10.1016/j.xcrp.2021.100736
  • Chen Z, Zheng Y, Löfler L, et al. Real-time atomic-resolution observation of coherent twin boundary migration in CrN. Acta Mater. 2021;208:116732. doi:10.1016/j.actamat.2021.116732
  • Kou Z, Huang R, Yang Y, et al. Revealing the atomic-scale evolution of sessile disconnections on twin boundaries during deformation. Scr Mater. 2022;221:114956. doi:10.1016/j.scriptamat.2022.114956
  • Zhu YT, Wu XL, Liao XZ, et al. Dislocation-twin interactions in nanocrystalline fcc metals. Acta Mater. 2011;59(2):812–821. doi:10.1016/j.actamat.2010.10.028
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352. doi:10.1126/science.1159610
  • Arroyo Rojas Dasilva Y, Erni R, Isa F, et al. Atomic-scale structural characterization of grain boundaries in epitaxial Ge/Si microcrystals by HAADF-STEM. Acta Mater. 2019;167:159–166. doi:10.1016/j.actamat.2019.01.031
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in Nanotwinned copper. Science. 2009;323(5914):607–610. doi:10.1126/science.1167641
  • Chen X, Wang Q, Cheng Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature. 2021;592(7856):712–716. doi:10.1038/s41586-021-03428-z
  • Ma E, Wu X. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat Commun. 2019;10(1):5623. doi:10.1038/s41467-019-13311-1
  • Jian W, Xie Z, Xu S, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater. 2020;199:352–369. doi:10.1016/j.actamat.2020.08.044
  • Chen X, Yuan F, Zhou H, et al. Structure motif of chemical short-range order in a medium-entropy alloy. Mater Res Lett. 2022;10(3):149–155. doi:10.1080/21663831.2022.2029607
  • Wong SL, Madivala M, Prahl U, et al. A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater. 2016;118:140–151. doi:10.1016/j.actamat.2016.07.032
  • Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 2017;128:292–303. doi:10.1016/j.actamat.2017.02.036
  • Uzer B, Picak S, Liu J, et al. On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys. Mater Res Lett. 2018;6(8):442–449. doi:10.1080/21663831.2018.1478331
  • Shan Z, Stach EA, Wiezorek JMK, et al. Grain boundary-mediated plasticity in Nanocrystalline Nickel. Science. 2004;305(5684):654–657. doi:10.1126/science.1098741
  • Zhou X, Li X, Lu K. Size dependence of grain boundary migration in metals under mechanical loading. Phys Rev Lett. 2019;122(12):126101. doi:10.1103/PhysRevLett.122.126101
  • Cao P. The strongest size in gradient nanograined metals. Nano Lett. 2020;20(2):1440–1446. doi:10.1021/acs.nanolett.9b05202
  • Li X, Sun S, Zou Y, et al. Twin-coupled shear bands in an ultrafine-grained CoCrFeMnNi high-entropy alloy deformed at 77 K. Mater Res Lett. 2022;10(6):385–391. doi:10.1080/21663831.2022.2053220
  • Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005;53(6):1821–1830. doi:10.1016/j.actamat.2004.12.031
  • Shan ZW, Mishra RK, Syed Asif SA, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7:115–119. doi:10.1038/nmat2085