645
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Tunning the tensile deformation behavior and mechanism of nickel-based superalloy CM247LC by adjusting ageing treatment

, , , , &
Pages 1013-1021 | Received 17 Jul 2023, Published online: 03 Nov 2023

Reference

  • Sims CT, Stoloff NS, Hagel WC. Superalloys II. New York: John Wiley & Sons; 1987.
  • Fuchs GE. Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater Sci Eng A. 2001;300:52–60. doi:10.1016/S0921-5093(00)01776-7
  • Li X, Liu Y, Zhao Y, et al. Oxygen changes crack modes of Ni-based single crystal superalloy. Mater Res Letts. 2021;9:531–539. doi:10.1080/21663831.2021.1993367
  • Ru Y, Hu B, Zhao W, et al. Topologically inverse microstructure in single-crystal superalloys: microstructural stability and properties at ultrahigh temperature. Mater Res Letts. 2021;9:497–506. doi:10.1080/21663831.2021.1982785
  • Cailletaud G, Cormier J, Eggeler G, et al. Nickel base single crystals across length scales. Amsterdam: Elsevier; 2022.
  • Khan T, Caron P. Effect of processing conditions and heat treatments on mechanical properties of single-crystal superalloy CMSX-2. Mater Sci Technol. 1986;2:486–492. doi:10.1179/mst.1986.2.5.486
  • Hopgood AA, Martin JW. The effect of aging on the yield stress of a single-crystal superalloy. Mater Sci Eng. 1987;91:105–110. doi:10.1016/0025-5416(87)90288-6
  • Nathal MV. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys. Metall Trans A. 1987;18:1961–1970. doi:10.1007/BF02647026
  • Caron P, Henderson PJ, Khan T, et al. On the effects of heat treatments on the creep behaviour of a single crystal superalloy. Scripta Metall. 1986;20:875–880. doi:10.1016/0036-9748(86)90458-8
  • Caron P, Khan T. Effect of heat treatments on the anisotropic creep behaviour and deformation modes in a nickel-based single crystal superalloy. In: PO Kettunen, TK Leposto, editors. Proceedings of the 8th international conference on the strength of metals and alloys. Tampere: Pergamon; 1989. p. 893–898.
  • Kim IS, Choi BG, Seo SM, et al. Influence of heat treatment on microstructure and tensile properties of conventionally cast and directionally solidified superalloy CM247LC. Mater Letts. 2008;62:1110–1113. doi:10.1016/j.matlet.2007.07.058
  • Sun N, Zhang L, Li Z, et al. Effect of heat-treatment on microstructure and high-temperature deformation behavior of a low rhenium-containing single crystal nickel-based superalloy. Mater Sci Eng A. 2014;606:417–425. doi:10.1016/j.msea.2014.03.093
  • Sun N, Zhang L, Li Z, et al. The effect of microstructure on the creep behavior of a low rhenium-containing single crystal nickel-based superalloy. Mater Sci Eng A. 2014;606:175–186. doi:10.1016/j.msea.2014.03.074
  • Rame J, Eyidi D, Joulain A, et al. Creep and tensile behavior of a nickel-based single crystal superalloy with a bimodal γ′ precipitation. Metall Mater Trans A. 2023;54:1496–1508. doi:10.1007/s11661-023-07022-y
  • Xu J, Zhao X, Li W, et al. Aging process design based on the morphological evolution of γ′ precipitates in a 4th generation nickel-based single crystal superalloy. J Mater Sci Technol. 2023;147:176–188. doi:10.1016/j.jmst.2022.10.072
  • Durand-Charre M. The microstructure of superalloys. Amsterdam: Gordon and Breach Science; 1997.
  • Jackson MP, Reed RC. Heat treatment of UDIMET 720Li: the effect of microstructure on properties. Mater Sci Eng A. 1999;259:85–97. doi:10.1016/S0921-5093(98)00867-3
  • Tian C, Han G, Cui C, et al. Effects of Co content on tensile properties and deformation behaviors of Ni-based disk superalloys at different temperatures. Mater Des. 2015;88:123–131. doi:10.1016/j.matdes.2015.08.114
  • Collins DM, Stone HJ. A modelling approach to yield strength optimisation in a nickel-base superalloy. Int J Plast. 2014;54:96–112. doi:10.1016/j.ijplas.2013.08.009
  • Preuss M, JQd F, Grant BMB, et al. The effect of γ’ particle size on the deformation mechanism in an advanced polycrystalline nickel-base superalloy. In: in Reed RC, Green KA, Caron P, Gabb TP, Fahrmann MG, editors. Proceeding of the 11th International Symposium on Superalloys. Champion, PA: AIME; 2008 Sep 14–18. p. 405–414.
  • Sun B, Zhang T, Song L, et al. Correlation between secondary γ′ and high-temperature tensile behavior of a powder metallurgy nickel-based superalloy EP962NP. Mater Sci Eng A. 2023;866:144687. doi:10.1016/j.msea.2023.144687
  • Feller-Kniepmeier M, Link T, Poschmann I, et al. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ′ phase. Acta Mater. 1996;44:2397–2407. doi:10.1016/1359-6454(95)00354-1
  • Rai RK, Sahu JK, Jena PSM, et al. Micromechanism of high-temperature tensile deformation behavior of a directionally solidified nickel base superalloy. J Mater Eng Perform. 2018;27:659–665. doi:10.1007/s11665-018-3176-2
  • Zhang P, Yuan Y, Gao ZH, et al. Strain-rate insensitive yield strength and deformation mechanisms of Ni-base superalloy CM247LC at 600 °C. J Alloys Compds. 2021;862:158478. doi:10.1016/j.jallcom.2020.158478
  • Lv P, Liu L, Zhao G, et al. Temperature effects on tensile behaviors and relevant deformation mechanisms of a low-cost nickel-based single crystal superalloy containing 1.5% Re. J Alloys Compds. 2022;926:166819. doi:10.1016/j.jallcom.2022.166819
  • Zhang P, Ma L, Yang G, et al. Extraordinary plastic behaviour of the γ′ precipitate in a directionally solidified nickel-based superalloy. Phil Mag Letts. 2016;96:19–26. doi:10.1080/09500839.2015.1134832
  • Bettge D, Österle W, Ziebs J. Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution. Inter J Mater Res. 1995;86:190–197. doi:10.1515/ijmr-1995-860309
  • Westbrooke EF, Forero LE, Ebrahimi F. Slip analysis in a Ni-base superalloy. Acta Mater. 2005;53:2137–2147. doi:10.1016/j.actamat.2005.01.025
  • Grant BMB, Francis EM, Quinta da Fonseca J, et al. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy. Acta Mater. 2012;60:6829–6841. doi:10.1016/j.actamat.2012.09.005
  • Link T, Feller-Kniepmeier M. Shear mechanisms of the γ′ phase in single-crystal superalloys and their relation to creep. Metall Trans A. 1992;23:99–105. doi:10.1007/BF02660857
  • Tang Y, Huang M, Xiong J, et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress. Acta Mater. 2017;126:336–345. doi:10.1016/j.actamat.2016.12.072
  • Zhang P, Yuan Y, Gao Z, et al. Plastic deformation mechanisms in a new Ni-base single crystal superalloy at room temperature. J Micro. 2017;268:186–192. doi:10.1111/jmi.12597
  • Zhang P, Li J, Yuan Y, et al. Correlation the<112>111 slip with high-temperature tension/compression asymmetry in the single-crystal nickel-based superalloy PWA1483. Mater Res Letts. 2023;11:399–406. doi:10.1080/21663831.2023.2166432
  • Yamashita M, Kakehi K. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloy with a high amount of tantalum. Scripta Mater. 2006;55:139–142. doi:10.1016/j.scriptamat.2006.03.048
  • Tsuno N, Shimabayashi S, Kakehi K, et al. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloys. In: in Reed RC, Green KA, Caron P, Gabb TP, Fahrmann MG, editors. Proceeding of the 11th international symposium on superalloys. Champion, PA: AIME; 2008 Sep 14–18. p. 433–442.
  • Zhang P, Yuan Y, Shi XB, et al. Extraordinary deformation modes in Ni-base superalloy CM247LC at room temperature. Metall Mater Trans. 2021;52:3699–3705. doi:10.1007/s11661-021-06370-x
  • Caron P, Khan T, Veyssière P. On precipitate shearing by superlattice stacking faults in superalloys. Phil Mag A. 1988;57:859–875. doi:10.1080/01418618808204522
  • Sinharoy S, Virro-Nic P, Milligan WW. Deformation and strength behavior of two nickel-base turbine disk alloys at 650 °C. Metall Mater Trans A. 2001;32:2021–2032. doi:10.1007/s11661-001-0014-0
  • Viswanathan GB, Sarosi PM, Henry MF, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT. Acta Mater. 2005;53:3041–3057. doi:10.1016/j.actamat.2005.03.017
  • Zhang P, Yuan Y, Li B, et al. Tensile deformation behavior of a new Ni-base superalloy at room temperature. Mater Sci Eng A. 2016;655:152–159. doi:10.1016/j.msea.2015.12.089
  • Décamps B, Raujol S, Coujou A, et al. On the shearing mechanism of γ′ precipitates by a single (a/6) <112> Shockley partial in Ni-based superalloys. Phil Mag. 2004;84:91–107. doi:10.1080/14786430310001621472
  • Douin J, Pettinari-Sturmel F, Coujou A. Dissociated dislocations in confined plasticity. Acta Mater. 2007;55:6453–6458. doi:10.1016/j.actamat.2007.08.006
  • Kovarik L, Unocic RR, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Pro Mater Sci. 2009;54:839–873. doi:10.1016/j.pmatsci.2009.03.010
  • Unocic RR, Zhou N, Kovarik L, et al. Dislocation decorrelation and relationship to deformation microtwins during creep of a γ′ precipitate strengthened Ni-based superalloy. Acta Mater. 2011;59:7325–7339. doi:10.1016/j.actamat.2011.07.069
  • Suzuki K, Ichihara M, Takeuchi S. Dissociated structure of superlattice dislocations in Ni3Ga with the L12 structure. Acta Metall. 1979;27:193–200. doi:10.1016/0001-6160(79)90096-8
  • Milligan WW, Antolovich SD. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall Trans. A. 1991;22:2309–2318. doi:10.1007/BF02664997
  • Zhang P, Yuan Y, Li J, et al. Microtwinning in single-crystal nickel-based superalloys during compressive deformation at 1000°C. Metall Mater Trans A. 2023;54:1484–1495. doi:10.1007/s11661-022-06944-3
  • Zhang YH, Chen QZ, Knowles DM. Mechanism of dislocation shearing of gamma in fine precipitate strengthened superalloy. Mater Sci Technol. 2001;17:1551–1555. doi:10.1179/026708301101509818
  • Cui CY, Gu YF, Yuan Y, et al. Dynamic strain aging in a new Ni–Co base superalloy. Scripta Mater. 2011;64:502–505. doi:10.1016/j.scriptamat.2010.11.025
  • Crudden DJ, Mottura A, Warnken N, et al. Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys. Acta Mater. 2014;75:356–370. doi:10.1016/j.actamat.2014.04.075
  • Dodaran M, Ettefagh AH, Guo SM, et al. Effect of alloying elements on the γ’ antiphase boundary energy in Ni-base superalloys. Intermetallics. 2020;117:106670. doi:10.1016/j.intermet.2019.106670
  • Chang KM, Srivastava SK, Bain DUF, et al. Advanced technology for superalloy affordability. Warrendale: TMS; 2000.
  • Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4. Acta Mater. 1996;44:1967–1977. doi:10.1016/1359-6454(95)00315-0
  • Barba D, Egan A, Gong Y, et al. Rationalisation of the micromechanisms behind the high-temperature strength limit in single-crystal nickel-based superalloys. In: Tin S, Hardy M, Clews J, Cormier J, Feng Q, Marcin J, O'Brien C, Suzuki A, editors. Proceedings of the 14th international symposium on superalloys. Cham: Spinger; 2021 Sep 13–16. p. 260–272.
  • Zhang P, Yuan Y, Gao ZH, et al. Microtwinning in the nickel-based superalloy CM247LC during compression tests. Phil Maga. 2022;102:2235–2255. doi:10.1080/14786435.2022.2108155
  • Lenz M, Eggeler YM, Müller J, et al. Tension/compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Mater. 2019;166:597–610. doi:10.1016/j.actamat.2018.12.053
  • Pandey P, Heczko M, Khatavkar N, et al. On the faulting and twinning mediated strengthening and plasticity in a γ′ strengthened CoNi-based superalloy at room temperature. Acta Mater. 2023;252:118928. doi:10.1016/j.actamat.2023.118928
  • Kear BH. The influence of ordering on the engineering properties of two phase alloys part I: mechanical mroperties of γ’ precipitation hardened nickel-base superalloys. In: H Warlimont, editor. Order-Disorder transformations in alloys. New York: Springer-Verlag; 1974. p. 440–474.
  • Duan P, Zhang P, Li J, et al. Intermediate temperature brittleness in a directionally solidified nickel-based superalloy M4706. Mater Sci Eng A. 2019;759:530–536. doi:10.1016/j.msea.2019.05.037
  • Jensen RR, Tien JK. Temperature and strain rate dependence of stress-strain behavior in a nickel-base superalloy. Metall Trans A. 1985;16:1049–1068. doi:10.1007/BF02811675