1,729
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Thermal conductivity enhancement of aluminum scandium nitride grown by molecular beam epitaxy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1048-1054 | Received 11 Sep 2023, Published online: 14 Nov 2023

References

  • Hardy MT, Downey BP, Nepal N, et al. Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Appl Phys Lett. 2017;110:162104. doi:10.1063/1.4981807
  • Zhang S, Fu WY, Holec D. Elastic constants and critical thicknesses of ScGaN and ScAlN. J Appl Phys. 2013;114:243516. doi:10.1063/1.4848036
  • Tahhan MB, Logan JA, Hardy MT, et al. Passivation schemes for ScAlN-barrier mm-wave high electron mobility transistors. IEEE Trans Electron Dev. 2022;69(3):962–967. doi:10.1109/ted.2021.3140016
  • Kazior TE, et al. High power density ScAlN-based heterostructure FETs for mm-wave applications. in IEEE MTT-S International Microwave Symposium Digest vols 2019-June 1136–1139. Institute of Electrical and Electronics Engineers Inc., 2019.
  • Song Y, Perez C, Esteves G, et al. Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond. ACS Appl Mater Interfaces. 2021;13:19031–19041.
  • Alvarez-Escalante G, Page R, Hu R, et al. High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films. APL Mater. 2022;10:011115. doi:10.1063/5.0078155
  • Tran DQ, Tasnádi F, Žukauskaitė A, et al. Thermal conductivity of ScxAl1−xN and YxAl1−xN alloys. Appl. Phys. Lett. 2023;122:182107. doi:10.1063/5.0145847
  • Yuan C, Park M, Zheng Y, et al. Phonon heat conduction in Al1-xScxN thin films. Mater Today Phys. 2021;21.
  • Wang P, Arto Laleyan D, Pandey A, et al. Molecular beam epitaxy and characterization of wurtzite ScxAl1−xN. J Appl Phys. 2020;116:151903.
  • Hao M, et al. Study of threading dislocations in wurtzite GaN films grown on sapphire by metalorganic chemical vapor deposition. Jpn J Appl Phys. 1998;37.
  • Regner KT, Majumdar S, Malen JA. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions. Rev Sci Instrum. 2013;84:064901. doi:10.1063/1.4808055
  • Schmidt AJ, Cheaito R, Chiesa M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev Sci Instrum. 2009;80:94901. doi:10.1063/1.3212673
  • Alvarez GA, Christiansen-Salameh J, Biswas A, et al. Cross-plane thermal conductivity of h-BN thin films grown by pulsed laser deposition. J Appl Phys. 2023;122:232101.
  • Moram MA, Zhang S. ScGaN and ScAlN: emerging nitride materials. J Mater Chem A. 2014;2; doi:10.1039/C3TA14189F
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:11002. doi:10.1063/1.4812323
  • Nakanishi S, Horiguchi T. Surface lattice constants of Si(111), Ni(111) and Cu(111). Jpn J Appl Phys. 1981;20:L214–L216. doi:10.1143/JJAP.20.L214
  • Slomski Joseph M. Thermal conductivity of group-III nitrides and oxides. North Carolina State University; 2017.
  • Filatova-Zalewska A, Litwicki Z, Suski T, et al. Thermal conductivity of thin films of gallium nitride, doped with aluminium, measured with 3ω method. Solid State Sci. 2020;101; doi:10.1016/j.solidstatesciences.2019.106105
  • Adachi S. Lattice thermal conductivity of group-IV and III-V semiconductor alloys. J Appl Phys. 2007;102.
  • Vitanov S. Simulation of high electron mobility transistors. Technische Universität Wien; 2010.
  • Pantha BN, Dahal R, Li J, et al. Thermoelectric properties of InxGa1−xN alloys. Appl Phys Lett. 2008;92:042112. doi:10.1063/1.2839309
  • Yamaguchi S, Izaki R, Yamagiwa K-i, et al. Thermal diffusivity and thermoelectric figure of merit of Al1-xInxN prepared by reactive radio-frequency sputtering. Appl Phys Lett. 2003;83:5398–5400. doi:10.1063/1.1637156