861
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grains

, , , , , , & show all
Pages 1063-1072 | Received 28 Sep 2023, Published online: 15 Nov 2023

References

  • Raabe D, Ponge D, Uggowitzer PJ, et al. Making sustainable aluminum by recycling scrap: the science of ‘dirty’ alloys. Prog Mater Sci. 2022;128:100947. doi: 10.1016/j.pmatsci.2022.100947
  • Stemper L, Tunes MA, Tosone R, et al. On the potential of aluminum crossover alloys. Prog Mater Sci. 2022;124:100873. doi: 10.1016/j.pmatsci.2021.100873
  • Stemper L, Mitas B, Kremmer T, et al. Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additions. Mater Des. 2019;181:107927. doi: 10.1016/j.matdes.2019.107927
  • Samberger S, Weißensteiner I, Stemper L, et al. Fine-grained aluminium crossover alloy for high-temperature sheet forming. Acta Mater. 2023;253:118952. doi: 10.1016/j.actamat.2023.118952
  • Stemper L, Tunes MA, Dumitraschkewitz P, et al. Giant hardening response in AlMgZn (Cu) alloys. Acta Mater. 2021;206:116617. doi: 10.1016/j.actamat.2020.116617
  • Trink B, Weißensteiner I, Uggowitzer PJ, et al. High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties. Scr Mater. 2022;215:114701. doi: 10.1016/j.scriptamat.2022.114701
  • Raynor G, Hume-Rothery W. Equilibrium between Al2Mg3Zn3 and the primary solid solution in the system aluminium-magnesium-zinc. Trans Faraday Soc. 1948;44:29–36. doi: 10.1039/tf9484400029
  • Bergman G, Waugh JL, Pauling L. The crystal structure of the metallic phase Mg32(Zn,Al)49. Acta Crystallogr. 1957;10(4):254–259. doi: 10.1107/S0365110X57000808
  • Cao C, Zhang D, Wang X, et al. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2 Mg-2.0 Zn (wt.%) alloy. Mater Charact. 2016;122:177–182. doi: 10.1016/j.matchar.2016.11.004
  • Yang X, Chen J, Liu J, et al. A high-strength AlZnMg alloy hardened by the T-phase precipitates. J Alloys Compd. 2014;610:69–73. doi: 10.1016/j.jallcom.2014.04.185
  • Wang Y, Sharma B, Xu Y, et al. Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys. Nat Commun. 2022;13(1):1–8.
  • Cao C, Zhang D, Zhuang L, et al. Improved age-hardening response and altered precipitation behavior of Al-5.2 Mg-0.45 Cu-2.0 Zn (wt%) alloy with pre-aging treatment. J Alloys Compd. 2017;691:40–43. doi: 10.1016/j.jallcom.2016.08.206
  • Mihara M, Marioara CD, Andersen SJ, et al. Precipitation in an Al–Mg–Cu alloy and the effect of a low amount of Ag. Mater Sci Eng A. 2016;658:91–98. doi: 10.1016/j.msea.2016.01.087
  • Hou S, Liu P, Zhang D, et al. Precipitation hardening behavior and microstructure evolution of Al–5.1 Mg–0.15 Cu alloy with 3.0 Zn (wt%) addition. J Mater Sci. 2018;53(5):3846–3861. doi: 10.1007/s10853-017-1811-1
  • Tunes MA, Stemper L, Greaves G, et al. Prototypic lightweight alloy design for stellar-radiation environments. Adv Sci. 2020;7(22):2002397. doi: 10.1002/advs.v7.22
  • Willenshofer PD, Tunes MA, Vo HT, et al. Radiation-resistant aluminium alloy for space missions in the extreme environment of the solar system; 2022. arXiv preprint arXiv:221003397.
  • Hu T, Ma K, Topping T, et al. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013;61(6):2163–2178. doi: 10.1016/j.actamat.2012.12.037
  • Chrominski W, Lewandowska M. Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater. 2016;103:547–557. doi: 10.1016/j.actamat.2015.10.030
  • Ralston K, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium. Electrochim Acta. 2011;56(4):1729–1736. doi: 10.1016/j.electacta.2010.09.023
  • Bazarnik P, Romelczyk-Baishya B, Kulczyk M, et al. The strength and ductility of 5483 aluminium alloy processed by various SPD methods. In: Materials science forum. Vol. 765. Baech, Switzerland: Trans Tech Publ; 2013. p. 423–428.
  • Khan MA, Wang Y, Hamza M, et al. Precipitation behaviour in an Al-Zn-Mg-Cu alloy subjected to high strain rate compression tests. Mater Charact. 2021;180:111398. doi: 10.1016/j.matchar.2021.111398
  • Khan MA, Xu C, Hamza M, et al. Enhanced tensile strength in an Al–Zn–Mg–Cu alloy via engineering the precipitates along the grain boundaries. J Mater Res Technol. 2023;22:696–705. doi: 10.1016/j.jmrt.2022.11.155
  • Murayama M, Horita Z, Hono K. Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing. Acta Mater. 2001;49(1):21–29. doi: 10.1016/S1359-6454(00)00308-6
  • Roven HJ, Liu M, Werenskiold JC. Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Mater Sci Eng A. 2008;483–484:54–58. doi: 10.1016/j.msea.2006.09.142
  • Luo J, Luo H, Li S, et al. Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy. Mater Des. 2020;187:108402. doi: 10.1016/j.matdes.2019.108402
  • Roven HJ, Liu M, Murashkin MY, et al. Nanostructures and microhardness in Al and Al–Mg alloys subjected to SPD. In: Materials science forum, Vol. 604. Baech, Switzerland: Trans Tech Publ; 2009. p. 179–185.
  • Young RA. The rietveld method. Oxford: International Union of Crystallography; 1993.
  • Kainz C, Schalk N, Saringer C, et al. In-situ investigation of the oxidation behavior of powdered TiN, Ti (C, N) and TiC coatings grown by chemical vapor deposition. Surf Coat Technol. 2021;406:126633. doi: 10.1016/j.surfcoat.2020.126633
  • Tunes MA, Quick CR, Stemper L, et al. A fast and implantation-free sample production method for large scale electron-transparent metallic samples destined for MEMS-based in situ S/TEM experiments. Materials. 2021;14(5):1085. doi: 10.3390/ma14051085
  • Afify N, Gaber AF, Abbady G, et al. Fine scale precipitates in Al-Mg-Zn alloys after various aging temperatures. Mater Sci Appl. 2011;2(05):427.
  • Chemingui M, Ameur R, Optasanu V, et al. DSC analysis of phase transformations during precipitation hardening in Al–Zn–Mg alloy (7020). J Therm Anal Calorim. 2019;136:1887–1894. doi: 10.1007/s10973-018-7856-9
  • Shanmugasundaram T, Murty B, Sarma VS. Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scr Mater. 2006;54(12):2013–2017. doi: 10.1016/j.scriptamat.2006.03.012
  • Geng Y, Zhang D, Zhang J, et al. Early-stage clustering and precipitation behavior in the age-hardened Al–Mg–Zn (-Cu) alloys. Mater Sci Eng A. 2022;856:144015. doi: 10.1016/j.msea.2022.144015
  • Guo C, Zhang H, Li J. Influence of Zn and/or Ag additions on microstructure and properties of Al-Mg based alloys. J Alloys Compd. 2022;904:163998. doi: 10.1016/j.jallcom.2022.163998
  • Afify N, Gaber A, Abbady G. Characterization of the developed precipitates in Al-2 at.% Zn-x at.% Mg, (x= 1.8, 2, 2.4, 3, 4.2). In: Light Metals 2013. Cham: Springer; 2016. p. 431–436.
  • Jiang X, Tafto J, Noble B, et al. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys. Metall Mater Trans A. 2000;31:339–348. doi: 10.1007/s11661-000-0269-x
  • Lang P, Wojcik T, Povoden-Karadeniz E, et al. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis. J Alloys Compd. 2014;609:129–136. doi: 10.1016/j.jallcom.2014.04.119
  • Chuan L, Wang Q, Tang H, et al. Effects of Mg content on microstructure and mechanical properties of low Zn-containing Al-xMg-3Zn-1Cu cast alloys. Trans Nonferrous Met Soc China. 2022;32(3):721–738. doi: 10.1016/S1003-6326(22)65828-X
  • Deng Y, Yin Z, Duan J, et al. Evolution of microstructure and properties in a new type 2 mm Al–Zn–Mg–Sc–Zr alloy sheet. J Alloys Compd. 2012;517:118–126. doi: 10.1016/j.jallcom.2011.12.049
  • Zhu X, Liu F, Wang S, et al. The development of low-temperature heat-treatable high-pressure die-cast Al–Mg–Fe–Mn alloys with Zn. J Mater Sci. 2021;56:11083–11097. doi: 10.1007/s10853-021-05972-5
  • Divinski SV, Reglitz G, Rösner H, et al. Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 2011;59(5):1974–1985. doi: 10.1016/j.actamat.2010.11.063
  • Zhao Y, Liu J, Topping TD, et al. Precipitation and aging phenomena in an ultrafine grained Al-Zn alloy by severe plastic deformation. J Alloys Compd. 2021;851:156931. doi: 10.1016/j.jallcom.2020.156931
  • Graf G, Spoerk-Erdely P, Staron P, et al. Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: an in situ SAXS and HEXRD study. Acta Mater. 2022;227:117727. doi: 10.1016/j.actamat.2022.117727
  • Polmear I, StJohn D, Nie JF, et al. Light alloys: metallurgy of the light metals. Oxford: Butterworth-Heinemann; 2017.
  • Liu T, Wang Q, Tang H, et al. Microstructure and mechanical properties of squeeze-cast Al-5.0 Mg-3.0 Zn-1.0 Cu alloys in solution-treated and aged conditions. Trans Nonferrous Met Soc China. 2020;30(9):2326–2338. doi: 10.1016/S1003-6326(20)65382-1
  • Gulyaev AP, Trusova EF. Some physical properties and some solid solutions of Al, Fe and Cu. Zh Tekh Fiz. 1950;20:66.
  • Auld J, Williams B. X-ray powder data of T phases composed of aluminium and magnesium with silver, copper or zinc. Acta Crystallogr. 1966;21(5):830–831. doi: 10.1107/S0365110X66003955
  • Bigot A, Auger P, Chambreland S, et al. Atomic scale imaging and analysis of T'precipitates in Al-Mg-Zn alloys. Microsc Microanal Microstruct. 1997;8(2):103–113. doi: 10.1051/mmm:1997109
  • Rashkova B, Faller M, Pippan R, et al. Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al–3wt.% Cu alloy. J Alloys Compd. 2014;600:43–50. doi: 10.1016/j.jallcom.2014.02.090
  • Nurislamova G, Sauvage X, Murashkin M, et al. Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation. Philos Mag Lett. 2008;88(6):459–466. doi: 10.1080/09500830802186938
  • Zhilyaev AP, Gimazov AA, Langdon TG. Recent developments in modelling of microhardness saturation during SPD processing of metals and alloys. J Mater Sci. 2013;48:4461–4466. doi: 10.1007/s10853-013-7155-6
  • Voorhees PW. The theory of Ostwald ripening. J Stat Phys. 1985;38:231–252. doi: 10.1007/BF01017860
  • Sauvage X, Wilde G, Divinski S, et al. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A. 2012;540:1–12. doi: 10.1016/j.msea.2012.01.080
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51(7):881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Lewandowska M, Wejrzanowski T, Kurzydłowski KJ. Grain growth in ultrafine grained aluminium processed by hydrostatic extrusion. J Mater Sci. 2008;43(23–24):7495–7500. doi: 10.1007/s10853-008-2808-6
  • Dhal A, Panigrahi S, Shunmugam M. Precipitation phenomena, thermal stability and grain growth kinetics in an ultra-fine grained Al 2014 alloy after annealing treatment. J Alloys Compd. 2015;649:229–238. doi: 10.1016/j.jallcom.2015.07.098