1,684
Views
0
CrossRef citations to date
0
Altmetric
Report

Lightweight Co-free eutectic high-entropy alloy with high strength and ductility by casting

, , , , , , , , , , , , & show all
Pages 26-33 | Received 06 Sep 2023, Published online: 29 Nov 2023

References

  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534. doi:10.1038/s41578-019-0121-4
  • Li W, Xie D, Li D, et al. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118:100777, doi:10.1016/j.pmatsci.2021.100777
  • Mooraj S, Chen W. A review on high-throughput development of high-entropy alloys by combinatorial methods. J Mater Inf. 2023;3:4, doi:10.20517/jmi.2022.41
  • Yao K, Liu L, Ren J, et al. High-entropy intermetallic compound with ultra-high strength and thermal stability. Scr Mater. 2021;194:113674, doi:10.1016/j.scriptamat.2020.113674
  • Lu Y, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys. Scr Mater. 2020;187:202–209. doi:10.1016/j.scriptamat.2020.06.022
  • Baker I, Wu M, Wang Z. Eutectic/eutectoid multi-principle component alloys: a review. Mater Charact. 2019;147:545–557. doi:10.1016/j.matchar.2018.07.030
  • Lu Y, Dong Y, Guo S, et al. A promising New class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200, doi:10.1038/srep06200
  • Gao X, Lu Y, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 2017;141:59–66. doi:10.1016/j.actamat.2017.07.041
  • Jiang H, Han K, Gao X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater Des. 2018;142:101–105. doi:10.1016/j.matdes.2018.01.025
  • Chung D, Ding Z, Yang Y. Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb0.5 eutectic high entropy alloy at room temperature. Adv Eng Mater. 2019;21:1801060, doi:10.1002/adem.201801060
  • He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compd. 2016;656:284–289. doi:10.1016/j.jallcom.2015.09.153
  • Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater Sci Eng A. 2016;651:590–597. doi:10.1016/j.msea.2015.10.071
  • Ai C, He F, Guo M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. J Alloy Compd. 2018;735:2653–2662. doi:10.1016/j.jallcom.2017.12.015
  • Mukarram M, Mujahid M, Yaqoob K. Design and development of CoCrFeNiTa eutectic high entropy alloys. J Mater Res Technol. 2021;10:1243–1249. doi:10.1016/j.jmrt.2020.12.042
  • Ding ZY, He QF, Wang Q, et al. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int J Plast. 2018;106:57–72. doi:10.1016/j.ijplas.2018.03.001
  • Shafiei A. Design of eutectic high entropy alloys in Al–Co–Cr–Fe–Ni system. Met Mater Int. 2021;27:127–138. doi:10.1007/s12540-020-00655-3
  • Yin B, Maresca F, Curtin WA. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys. Acta Mater. 2020;188:486–491. doi:10.1016/j.actamat.2020.01.062
  • Lozinko A, Mishin OV, Yu T, et al. Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi2.1. IOP Conf Ser. 2019;580:012039, doi:10.1088/1757-899X/580/1/012039
  • Lozinko A, Zhang Y, Mishin OV, et al. Microstructural characterization of eutectic and near-eutectic AlCoCrFeNi high-entropy alloys. J Alloy Compd. 2020;822:153558, doi:10.1016/j.jallcom.2019.153558
  • Viswanathan GB, Banerjee R, Singh A, et al. Precipitation of ordered phases in metallic solid solutions: a synergistic clustering and ordering process. Scr Mater. 2011;65:485–488. doi:10.1016/j.scriptamat.2011.06.002
  • Miao J, Slone C, Dasari S, et al. Ordering effects on deformation substructures and strain hardening behavior of a CrCoNi based medium entropy alloy. Acta Mater. 2021;210:116829, doi:10.1016/j.actamat.2021.116829
  • Rojhirunsakool T, Singh ARP, Nag S, et al. Temporal evolution of non-equilibrium γ’ precipitates in a rapidly quenched nickel base superalloy. Intermetallics. 2014;54:218–224. doi:10.1016/j.intermet.2014.06.011
  • Xiong T, Yang W, Zheng S, et al. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. J Mater Sci Technol. 2021;65:216–227. doi:10.1016/j.jmst.2020.04.073
  • Wu Q, He F, Li J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile. Nat Commun. 2022;13:4697, doi:10.1038/s41467-022-32444-4
  • Jin X, Bi J, Zhang L, et al. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J Alloy Compd. 2019;770:655–661. doi:10.1016/j.jallcom.2018.08.176
  • Jiang H, Qiao D, Jiao W, et al. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy. J Mater Sci Technol. 2021;61:119–124. doi:10.1016/j.jmst.2020.05.053
  • Jin X, Zhou Y, Zhang L, et al. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater Lett. 2018;216:144–146. doi:10.1016/j.matlet.2018.01.017
  • Yang Z, Wang Z, Wu Q, et al. Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition. Appl Phys A. 2019;125:208, doi:10.1007/s00339-019-2506-z
  • Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater Des. 2018;143:49–55. doi:10.1016/j.matdes.2018.01.057
  • Shi P, Li Y, Wen Y, et al. A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening. J Mater Sci Technol. 2021;89:88–96. doi:10.1016/j.jmst.2021.03.005
  • Wu H, Xie J, Yang H, et al. A cost-effective eutectic high entropy alloy with an excellent strength–ductility combination designed by VEC criterion. J Mater Res Technol. 2022;19:1759–1765. doi:10.1016/j.jmrt.2022.05.165
  • Ma L, Wang J, Jin P. Microstructure and mechanical properties variation with Ni content in Al0.8CoCr0.6Fe0.7Nix (x = 1.1, 1.5, 1.8, 2.0) eutectic high-entropy alloy system. Mater Res Express. 2020;7:016566. doi:10.1088/2053-1591/ab6580
  • Liu Q, Liu X, Fan X, et al. Designing novel AlCoCrNi eutectic high entropy alloys. J Alloy Compd. 2022;904:163775, doi:10.1016/j.jallcom.2022.163775
  • Shen J, Lopes JG, Zeng Z, et al. Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD. Mater Sci Eng A. 2023;872:144946, doi:10.1016/j.msea.2023.144946
  • Chen J-X, Li T, Chen Y, et al. Ultra-strong heavy-drawn eutectic high entropy alloy wire. Acta Mater. 2023;243:118515, doi:10.1016/j.actamat.2022.118515
  • Bhattacharjee T, Wani IS, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci Rep. 2018;8:3276, doi:10.1038/s41598-018-21385-y
  • Shi P, Zhong Y, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater Today. 2020;41:62–71. doi:10.1016/j.mattod.2020.09.029
  • Shi P, Li R, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science. 2021;373:912–918. doi:10.1126/science.abf6986
  • Wang J, Misra A. Plastic homogeneity in nanoscale heterostructured binary and multicomponent metallic eutectics: an overview. Curr Opin Solid State Mater Sci. 2023;27:101055, doi:10.1016/j.cossms.2022.101055
  • Gao YF, Zhang W, Shi PJ, et al. A mechanistic interpretation of the strength-ductility trade-off and synergy in lamellar microstructures. Mater Today Adv. 2020;8:100103, doi:10.1016/j.mtadv.2020.100103
  • Xu N, Yang Z, Mu X, et al. Effect of Al addition on the microstructures and deformation behaviors of non-equiatomic FeMnCoCr metastable high entropy alloys. Appl Phys Lett. 2021;119:261902, doi:10.1063/5.0069518
  • Shi P, Ren W, Zheng T, et al. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019;10:489, doi:10.1038/s41467-019-08460-2
  • Jiang Z, Chen W, Chu C, et al. Directly cast fibrous heterostructured FeNi0.9Cr0.5Al0.4 high entropy alloy with low-cost and remarkable tensile properties. Scr Mater. 2023;230:115421. doi:10.1016/j.scriptamat.2023.115421
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532. doi:10.1080/21663831.2017.1343208
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505. doi:10.1073/pnas.1517193112
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31. doi:10.1080/21663831.2020.1796836
  • Ovri H, Lilleodden ET. New insights into plastic instability in precipitation strengthened Al–Li alloys. Acta Mater. 2015;89:88–97. doi:10.1016/j.actamat.2015.01.065
  • Picak S, Yilmaz HC, Karaman I. Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures. Scr Mater. 2021;202:113995, doi:10.1016/j.scriptamat.2021.113995
  • Guo W, Su J, Lu W, et al. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy. Acta Mater. 2020;185:45–54. doi:10.1016/j.actamat.2019.11.055
  • Yan X, Liaw PK, Zhang Y. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. J Mater Sci Technol. 2022;110:109–116. doi:10.1016/j.jmst.2021.08.034
  • Park HS. Stress-Induced martensitic phase transformation in intermetallic nickel aluminum nanowires. Nano Lett. 2006;6:958–962. doi:10.1021/nl060024p
  • Sutrakar VK, Mahapatra DR. Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading. Intermetallics. 2010;18:679–687. doi:10.1016/j.intermet.2009.11.006
  • Wen X, Zhu L, Naeem M, et al. Strong work-hardenable body-centered-cubic high-entropy alloys at cryogenic temperature. Scr Mater. 2023;231:115434, doi:10.1016/j.scriptamat.2023.115434