1,915
Views
2
CrossRef citations to date
0
Altmetric
Report

Achieving superior high-temperature mechanical properties in Al-Cu-Li-Sc-Zr alloy with nano-scale microstructure via laser additive manufacturing

ORCID Icon, , , , , , & show all
Pages 17-25 | Received 28 Sep 2023, Published online: 27 Nov 2023

References

  • Michi RA, Plotkowski A, Shyam A, et al. Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. Int Mater Rev. 2021;67(3):298–345. doi:10.1080/09506608.2021.1951580
  • Gao YH, Yang C, Zhang JY, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C. Mater Res Lett. 2018;7(1):18–25. doi:10.1080/21663831.2018.1546773
  • Liu Y, Meng J, Zhu L, et al. Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions. Addit Manuf. 2022;54:102772.
  • DebRoy T, Mukherjee T, Wei HL, et al. Metallurgy, mechanistic models and machine learning in metal printing. Nature Rev Mater. 2020;6(1):48–68. doi:10.1038/s41578-020-00236-1
  • Ren J, Zhang Y, Zhao D, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature. 2022;608(7921):62–68. doi:10.1038/s41586-022-04914-8
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372(6545):eabg1487. doi:10.1126/science.abg1487
  • Sun T, Wang H, Gao Z, et al. The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy. Mater Res Letters. 2022;10(10):656–665. doi:10.1080/21663831.2022.2080514
  • Wan J, Li K, Geng H, et al. Simultaneously enhancing strength and ductility of selective laser melted AlSi10Mg via introducing in-cell Al4C3 nanorods. Materials Res Lett. 2023;11(6):422–429. doi:10.1080/21663831.2023.2173028
  • Griffiths S, Croteau JR, Rossell MD, et al. Coarsening- and creep resistance of precipitation-strengthened Al–Mg–Zr alloys processed by selective laser melting. Acta Mater. 2020;188:192–202. doi:10.1016/j.actamat.2020.02.008
  • Bi J, Lei Z, Chen Y, et al. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion. J Mater Sci Technol. 2021;69:200–211. doi:10.1016/j.jmst.2020.08.033
  • Lv H, Peng P, Feng T, et al. High-performance co-continuous Al-Ce-Mg alloy with in-situ nano-network structure fabricated by laser powder bed fusion. Addit Manuf. 2022;60:103218.
  • Wang W, Takata N, Suzuki A, et al. High-temperature strength sustained by nano-sized eutectic structure of Al–Fe alloy manufactured by laser powder bed fusion. Mater Sci Eng A. 2022;838:142782.
  • Kimura T, Nakamoto T, Ozaki T, et al. Microstructures and mechanical properties of aluminum-transition metal binary alloys (Al-Fe, Al-Mn, and Al-Cr) processed by laser powder bed fusion. J Alloys Compd. 2021;872:159680.
  • Plotkowski A, Sisco K, Bahl S, et al. Microstructure and properties of a high temperature Al–Ce–Mn alloy produced by additive manufacturing. Acta Mater. 2020;196:595–608. doi:10.1016/j.actamat.2020.07.014
  • Li G, Huang Y, Li X, et al. Laser powder bed fusion of nano-titania modified 2219 aluminium alloy with superior mechanical properties at both room and elevated temperatures: The significant impact of solute. Addit Manuf. 2022;60:103296.
  • He P, Kong H, Liu Q, et al. Elevated temperature mechanical properties of TiCN reinforced AlSi10Mg fabricated by laser powder bed fusion additive manufacturing. Mater Sci Eng A. 2021;811:141025.
  • Zhu Z, Hu Z, Seet HL, et al. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int J Mach Tools Manuf. 2023;190:104047.
  • Uzan NE, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf. 2018;24:257–263.
  • Lehmhus D, Rahn T, Struss A, et al. High-Temperature Mechanical Properties of Stress-Relieved AlSi10Mg Produced via Laser Powder Bed Fusion Additive Manufacturing. Materials (Basel). 2022;15(20):7386.
  • Shyam A, Plotkowski A, Bahl S, et al. An additively manufactured AlCuMnZr alloy microstructure and tensile mechanical properties. Materialia. 2020;12:100758.
  • Qi Y, Hu Z, Zhang H, et al. High strength Al–Li alloy development for laser powder bed fusion. Addit Manuf. 2021;47:102249.
  • Røyset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2013;50(1):19–44. doi:10.1179/174328005X14311
  • Cassell AM, Robson JD, Race CP, et al. Dispersoid composition in zirconium containing Al-Zn-Mg-Cu (AA7010) aluminium alloy. Acta Mater. 2019;169:135–146. doi:10.1016/j.actamat.2019.02.047
  • Qi Y, Zhang H, Zhang W, et al. Heat treatment of Al-Cu-Li-Sc-Zr alloy produced by laser powder bed fusion. Mater Charact. 2023;195:112505. doi:10.1016/j.matchar.2022.112505
  • ISO, Metallic materials — Tensile testing — Part 2: Method of test at elevated temperature, 2018.
  • Zhu Z, Ng FL, Seet HL, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Mater Today. 2022;52:90–101. doi:10.1016/j.mattod.2021.11.019
  • Hu Z, Qi Y, Nie X, et al. The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting. Mater Charact. 2021;178:111198. doi:10.1016/j.matchar.2021.111198
  • Yilmaz A. The Portevin-Le Chatelier effect: a review of experimental findings. Sci Technol Adv Mater. 2011;12(6):063001. doi:10.1088/1468-6996/12/6/063001
  • Belelli F, Casati R, Riccio M, et al. Development of a Novel High-Temperature Al Alloy for Laser Powder Bed Fusion. Metals. 2020;11(1). doi:10.3390/met11010035
  • Tang M, Pistorius PC, Narra S, et al. Rapid solidification: selective laser melting of AlSi10Mg. JOM. 2016;68(3):960–966. doi:10.1007/s11837-015-1763-3
  • Jia Q, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting. Acta Mater. 2020;193:239–251. doi:10.1016/j.actamat.2020.04.015
  • Wang Z, Lin X, Kang N, et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J Mater Sci Technol. 2021;95:40–56. doi:10.1016/j.jmst.2021.03.069
  • Liu D, Wu D, Wang Y, et al. Enhanced high-temperature mechanical properties of laser-arc hybrid additive manufacturing of Al-Zn-Mg-Cu alloy via microstructure control. J Mater Sci Technol. 2024;169:220–234. doi:10.1016/j.jmst.2023.05.071
  • Tang J, Liu M, Bo G, et al. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling. J Mater Sci Technol. 2022;116:130–150. doi:10.1016/j.jmst.2021.12.008
  • Deschamps A, Brechet Y. Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 1998;47(1):293–305. doi:10.1016/S1359-6454(98)00296-1
  • Styles MJ, Marceau RKW, Bastow TJ, et al. The competition between metastable and equilibrium S (Al 2 CuMg) phase during the decomposition of Al Cu Mg alloys. Acta Mater. 2015;98:64–80. doi:10.1016/j.actamat.2015.07.011
  • Voorhees PW. Alloys: scandium overtakes zirconium. Nat Mater. 2006;5(6):435–436. doi:10.1038/nmat1663
  • Clouet E, Lae L, Epicier T, et al. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5(6):482–488. doi:10.1038/nmat1652
  • Yang X, Wang Y, Zhang W, et al. Laser powder bed fusion fabricated Cu-1.8Cr-1.0Nb-2.0Fe alloy with in-situ precipitation strengthening. Mater Sci Eng A. 2023;878:145222. doi:10.1016/j.msea.2023.145222
  • Wu S, Soreide HS, Chen B, et al. Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nat Commun. 2022;13(1):3495. doi:10.1038/s41467-022-31222-6
  • Yao K, Liu L, Ren J, et al. High-entropy intermetallic compound with ultra-high strength and thermal stability. Scripta Mater. 2021;194:113674.
  • Mikhaylovskaya AV, Ryazantseva MA, Portnoy VK. Effect of eutectic particles on the grain size control and the superplasticity of aluminium alloys. Mater Sci Eng A. 2011;528(24):7306–7309. doi:10.1016/j.msea.2011.06.042
  • Mikhaylovskaya AV, Kotov AD, Pozdniakov AV, et al. A high-strength aluminium-based alloy with advanced superplasticity. J Alloys Compd. 2014;599:139–144. doi:10.1016/j.jallcom.2014.02.061