786
Views
0
CrossRef citations to date
0
Altmetric
Report

Development of a novel Ti-Nb-Au superelastic alloy with exceptionally low elastic modulus

, , , &
Pages 34-41 | Received 06 Sep 2023, Published online: 03 Dec 2023

References

  • Gajiwala M, Paliwal J, Husain SY, et al. Influence of surface modification of titanium implants on improving osseointegration: An in vitro study. J Prosthetic Dentistry; 126(3):405.e1–405.e7. doi:10.1016/j.prosdent.2021.06.034.
  • Raphel J, Holodniy M, Goodman SB, et al. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants.  Biomaterials. 2016;84:301–314. doi:10.1016/j.biomaterials.2016.01.016.
  • Tabanella G, Nowzari H, Slots J. Clinical and microbiological determinants of ailing dental implants. Clin Implant Dent Relat Res. 2009;11(1):24–36. doi:10.1111/j.1708-8208.2008.00088.x
  • Kochar SP, Reche A, Paul P. The etiology and management of dental implant failure: A review. Cureus. 2022;14(10):e30455. doi:10.7759/cureus.30455.
  • Anijs T, Kouwert I, Verdonschot N, et al. Towards a standard approach to assess tibial bone loss following total knee arthroplasty. Clin Rev Bone Miner Metab. 2020;18:72–86. doi:10.1007/s12018-021-09276-9
  • Martins JRS, Araújo RO, Nogueira RA, et al. Internal friction and microstructure of ti and ti-mo alloys containing oxygen. Arch Metall Mater. 2016;61(1):25–30. doi:10.1515/amm-2016-0011
  • Wilson J. Metallic biomaterials. In: Fundamental biomaterials: metals. Elsevier; 2018, 1–33.
  • Yang R, Hao YL, Li SJ. Development and application of Low-modulus biomedical titanium alloy Ti2448. Biomed Eng Trends Mater Sci. 2011: 225–248. Available from: www.intechopen.com.
  • Matsumoto H, Watanabe S, Hanada S. Beta TiNbSn alloys with Low young’s modulus and high strength. Mater Trans. 2005;46; doi:10.2320/matertrans.46.1070.
  • Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys. Phys Rev B. 2004;70(17):174113. doi:10.1103/PhysRevB.70.174113.
  • Hao YL, Li SJ, Prima F, et al. Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus. Scr Mater. 2012;67(5):487–490. doi:10.1016/j.scriptamat.2012.06.011
  • Kim HY, Miyazaki S. Ni-free Ti-based shape memory alloys. Elsevier; 2018.
  • Miyazaki S, Kim HY, Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A. 2006;438–440:18–24. doi:10.1016/j.msea.2006.02.054.
  • Li S, Lee WT, Yeom JT, et al. Towards bone-like elastic modulus in Ti Nb Sn alloys with large recovery strain for biomedical applications. J Alloys Compd. 2022;925:166724. doi:10.1016/j.jallcom.2022.166724
  • Hussein MA, Kumar AM, Azeem MA, et al. Ti–30Nb–3Ag alloy with improved corrosion resistance and antibacterial properties for orthopedic and dental applications produced by mechanical alloying. J Mech Behav Biomed Mater. 2023;1:142. doi:10.1016/j.jmbbm.2023.105851.
  • Hussein MA, Azeem MA, Kumar AM, et al. Design and processing of near-β Ti–Nb–Ag alloy with low elastic modulus and enhanced corrosion resistance for orthopedic implants. J Mater Res Technol. 2023;24:259–273. doi:10.1016/j.jmrt.2023.03.003
  • Zhang E, Zhao X, Hu J, et al. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater KeAi Commun. 2021;6:2569–2612. doi:10.1016/j.bioactmat.2021.01.030
  • Zhao Z, Xu W, Xin H, et al. Microstructure, corrosion and anti-bacterial investigation of novel Ti-xNb-yCu alloy for biomedical implant application. J Mater Res Technol. 2022;18:5212–5225. doi:10.1016/j.jmrt.2022.04.158
  • Fu S, Zhao X, Yang L, et al. A novel Ti-Au alloy with strong antibacterial properties and excellent biocompatibility for biomedical application. Biomater Adv. 2022: 133. doi:10.1016/j.msec.2022.112653.
  • Horiuchi Y, Nakayama K, Inamura T, et al. Effect of Cu addition on shape memory behavior of Ti-18 mol%Nb alloys. Mater Trans. 2007;48(3):414–421. doi:10.2320/matertrans.48.414
  • Alberta LA, Vishnu J, Hariharan A, et al. Novel low modulus beta-type Ti-Nb alloys by gallium and copper minor additions for antibacterial implant applications. J Mater Res Technol. 2022;20:3306–3322. doi:10.1016/j.jmrt.2022.08.111.
  • Takahashi M, Kikuchi M, Takada Y, et al. Corrosion behavior and microstructures of experimental Ti-Au alloys. Dent Mater J. 2004;23(2):109–116. doi:10.4012/dmj.23.109
  • Chiu WT, Fuchiwaki K, Umise A, et al. Enhancement of the superelastic behavior of the Ti–Au–Cr–based shape memory alloys via the manipulations of annealing–treatments and Ta additions. Mater Sci Eng A. 2022: 847. doi:10.1016/j.msea.2022.143312.
  • Church NL, Hildyard EM, Jones NG. The influence of grain size on the onset of the superelastic transformation in Ti–24Nb–4Sn–8Zr (wt%). Mater Sci Eng A. 2021;828:142072. doi:10.1016/j.msea.2021.142072.
  • Gao JJ, Thibon I, Castany P, et al. Effect of grain size on the recovery strain in a new Ti–20Zr–12Nb–2Sn superelastic alloy. Mater Sci Eng A. 2020;793:139878. doi:10.1016/j.msea.2020.139878.
  • Drakopoulos M, Connolley T, Reinhard C, et al. I12: The joint engineering, environment and processing (JEEP) beamline at diamond light source. J Synchrotron Radiat. 2015;22:828–838. doi:10.1107/S1600577515003513
  • Hart ML, Drakopoulos M, Reinhard C, et al. Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction. J Appl Crystallogr. 2013;46(5):1249–1260. doi:10.1107/S0021889813022437
  • Šišak Jung D, Donath T, Magdysyuk O, et al. High-energy X-ray applications: current status and new opportunities. Powder Diffr. 2017;32(S2):S22–S27. doi:10.1017/S0885715617001191
  • Filik J, Ashton AW, Chang PCY, et al. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. J Appl Crystallogr. 2017;50(3):959–966. doi:10.1107/S1600576717004708
  • Basham M, Filik J, Wharmby MT, et al. Data Analysis WorkbeNch (DAWN). J Synchrotron Radiat. 2015;22:853–858. doi:10.1107/S1600577515002283
  • Hildyard EM, Connor LD, Owen LR, et al. The influence of microstructural condition on the phase transformations in Ti-24Nb (at.%). Acta Mater. 2020;199:129–140. doi:10.1016/j.actamat.2020.08.004
  • Zhang J, Sun F, Hao Y, et al. Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti-Nb-Zr alloy. Mater Sci Eng A. 2013;563:78–85. doi:10.1016/j.msea.2012.11.045
  • Elmay W, Prima F, Gloriant T, et al. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy. J Mech Behav Biomed Mater. 2013;18:47–56. doi:10.1016/j.jmbbm.2012.10.018
  • Ijaz MF, Kim HY, Hosoda H, et al. Effect of Sn addition on stress hysteresis and superelastic properties of a Ti-15Nb-3Mo alloy. Scr Mater. 2014;72–73:29–32. doi:10.1016/j.scriptamat.2013.10.007.
  • Bönisch M, Calin M, Van Humbeeck J, et al. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys. Mater Sci Eng C. 2015;48:511–520. doi:10.1016/j.msec.2014.12.048
  • Church NL, Jones NG. The influence of stress on subsequent superelastic behaviour in Ti2448 (Ti–24Nb–4Zr–8Sn, wt%). Mater Sci Eng A. 2021;833:142530. doi:10.1016/j.msea.2021.142530.
  • Kim HY, Ohmatsu Y, Kim JI, et al. Mechanical properties and shape memory behavior of Ti-Nb alloys. Mater Trans. 2004;45(4):1090–1095. doi:10.2320/matertrans.45.1090.
  • Héraud L, Castany P, Ijaz MF, et al. Large-strain functional fatigue properties of superelastic metastable β titanium and NiTi alloys: A comparative study. J Alloys Compd. 2023;953:170170. doi:10.1016/j.jallcom.2023.170170.
  • Church N, Talbot C, Connor L, et al. Functional fatigue during superelastic load cycling of Ti2448 (Ti-24Nb-4Zr-8Sn, wt%). Materialia. 2023;28:101719. doi:10.1016/j.mtla.2023.101719.
  • Vorontsov VA, Jones NG, Rahman KM, et al. Superelastic load cycling of Gum Metal. Acta Mater. 2015;88:323–333. doi:10.1016/j.actamat.2015.01.033.
  • Tong Y, Shuitcev A, Zheng Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Adv. Eng. Mater. 2020;22:1900496. doi:10.1002/adem.201900496.
  • Farzik Ijaz M, Tasaki W, Young Kim H, et al. Achievement of ultra-low elastic modulus through optimization of phase stability and recrystallization texture in Ti–Nb–Fe–Sn alloys. Adv Eng Mater. 2023: 2300468. doi:10.1002/adem.202300468.
  • You L, Song X. A study of low Young′s modulus Ti-Nb-Zr alloys using d electrons alloy theory. Scr Mater. 2012;67(1):57–60. doi:10.1016/j.scriptamat.2012.03.020
  • Meardon SA, Derrick TR, Willson JD, et al. Peak and per-step tibial bone stress during walking and running in female and male recreational runners. Amer J Sports Med. 2021;49(8):2227–2237. doi:10.1177/03635465211014854
  • Morinaga M, Kato M, Kamimura T, et al. Theoretical design of β-type titanium alloys. Miner Met Mater Soc. 1993.
  • Cai S, Wang L, Schaffer JE, et al. Influence of Sn on martensitic beta Ti alloys. Mater Sci Eng A. 2019;743:764–772. doi:10.1016/j.msea.2018.11.095
  • Fu J, Yamamoto A, Kim HY, et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 2015;17:56–67. doi:10.1016/j.actbio.2015.02.001
  • Hao YL, Li SJ, Sun SY, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277–286. doi:10.1016/j.actbio.2006.11.002.
  • Luke CA, Taggart R, Polonis DH. Electronic Factors and the metastable constitution of quenched alloys based on titanium and zirconium. J Nucl Mater. 1965;16:7–18.
  • Church NL, Talbot CEP, Jones NG. On the influence of thermal history on the martensitic transformation in Ti-24Nb-4Zr-8Sn (wt%). Shape Memory Superelasticity. 2021;7(1):166–178. doi:10.1007/s40830-021-00309-2
  • Fedotov SV, Baikov AA. Peculiarities of changes in elastic properties of titanium alloys. In: RI Jaffee, HM Burte, editors. Titanium Science and Technology. 1973. p. 871–881.
  • Hao YL, Li SJ, Sun SY, et al. Effect of Zr and Sn on young’s modulus and superelasticity of Ti-Nb-based alloys. Mater Sci Eng A. 2006;441(1–2):112–118. doi:10.1016/j.msea.2006.09.051.
  • Figueiredo Azevedo T, Nunes Lima T, Garcia de Blas J, et al. The mechanical behavior of TiNbSn alloys according to alloying contents, cold rolling and aging. J Mech Behav Biomed Mater. 2017;75:33–40. doi:10.1016/j.jmbbm.2017.07.002
  • Al-Zain Y, Kim HY, Hosoda H, et al. Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater. 2010;58(12):4212–4223. doi:10.1016/j.actamat.2010.04.013