1,080
Views
0
CrossRef citations to date
0
Altmetric
Report

Multiple-stage strain hardening due to the deformation-induced martensitic transformation in additively manufactured high-entropy alloy

, , , & ORCID Icon
Pages 50-57 | Received 25 Sep 2023, Published online: 13 Dec 2023

References

  • Malvern LE. Introduction to the mechanics of a continuous medium. Englewood Cliffs (NJ): Prentice-Hall Inc.; 1969.
  • Lubliner J. Plasticity theory. New York: Courier Corporation; 2008.
  • Wang Z, Lu W, Raabe D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. J Alloys Compd. 2019;781:734–743. doi:10.1016/j.jallcom.2018.12.061
  • Moon J, Tabachnikova E, Shumilin S, et al. Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Mater Today. 2021;50:55–68. doi:10.1016/j.mattod.2021.08.001
  • Shi P, Zhong Y, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater Today. 2020;41:62–71. doi:10.1016/j.mattod.2020.09.029
  • Yang J, Liang C, Wang C, et al. Improving mechanical properties of (Co1.5FeNi)88.5Ti6Al4R1.5 (R = Hf, W, Nb, Ta, Mo, V) multi-component high-entropy alloys via multi-stage strain hardening strengthening. Mater Des. 2022;222:111061. doi:10.1016/j.matdes.2022.111061
  • Bae JW, Seol JB, Moon J, et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures. Acta Mater. 2018;161:388–399. doi:10.1016/j.actamat.2018.09.057
  • Karthik GM, Kim HS. Heterogeneous aspects of additive manufactured metallic parts: a review. Met Mater Int. 2021;27(1):1–39. doi:10.1007/s12540-020-00931-2
  • Jiang Z, Li Y, Luo H, et al. Effect of the boundary orientation of melt pool on mechanical property and fracture path in selective-laser-melted AlSi10Mg alloy. Met Mater Int. 2022;28(12):2934–2946. doi:10.1007/s12540-022-01199-4
  • Jeyaprakash N, Yang CH, Prabu G, et al. Microstructure and tribological behaviour of inconel-625 superalloy produced by selective laser melting. Met Mater Int. 2022;28(12):2997–3015. doi:10.1007/s12540-022-01198-5
  • Park JM, Asghari-Rad P, Zargaran A, et al. Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing. Acta Mater. 2021;221:117426. doi:10.1016/j.actamat.2021.117426
  • Kong D, Dong C, Wei S, et al. About metastable cellular structure in additively manufactured austenitic stainless steels. Add Manuf. 2021;38:101804.
  • Kwon J, Karthik GM, Estrin Y, et al. Constitutive modeling of cellular-structured metals produced by additive manufacturing. Acta Mater. 2022;241:118421. doi:10.1016/j.actamat.2022.118421
  • Chaoqi Q, Yang D, Ping Y, et al. Influence of heat treatment on microstructure and mechanical properties of TC4 fabricated by laser melting deposition. Met Mater Int. 2022;28(12):3068–3079. doi:10.1007/s12540-022-01181-0
  • Kwon J, Lee J, Kim HS. Constitutive modeling and finite element analysis of metastable medium entropy alloy. Mater Sci Eng A. 2022;840:142915. doi:10.1016/j.msea.2022.142915
  • Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 1984;32:57–70. doi:10.1016/0001-6160(84)90202-5
  • Estrin Y. Unified constitutive laws of plastic deformation. In: AS Krausz, K Krausz, editors. Dislocation-density-related constitutive modeling. California: Academic Press Inc; 1996. p. 69–106.
  • Sinclair CW, Poole WJ, Brechet Y. A model for the grain size dependent work hardening of copper. Scr Mater. 2006;55:739–742. doi:10.1016/j.scriptamat.2006.05.018
  • Zhu LL, Shi SQ, Lu K, et al. A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution. Acta Mater. 2012;60:5762–5772. doi:10.1016/j.actamat.2012.06.059
  • Li JJ, Soh AK. Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int J Plast. 2012;39:88–102. doi:10.1016/j.ijplas.2012.06.004
  • Bouaziz O, Buessler P. Mechanical behavior of multiphase materials: an intermediate mixture law without fitting parameter. Metall Res Tech. 2002;99:71–77.
  • Song C, Yu H, Lu J, et al. Stress partitioning among ferrite, martensite and retained austenite of a TRIP-assisted multiphase steel: an in-situ high-energy X-ray diffraction study. Mater Sci Eng A. 2018;726:1–9. doi:10.1016/j.msea.2018.04.066
  • Jacques PJ, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater. 2007; 55(11):3681–3693. doi:10.1016/j.actamat.2007.02.029
  • Yang Y, Neding B, Mu W, et al. Revealing the interdependence of microstructure evolution, micromechanics and macroscopic mechanical behavior of multi-phase medium Mn steels. Mater Sci Eng A. 2022;839:142857. doi:10.1016/j.msea.2022.142857
  • Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975;6:791. doi:10.1007/BF02672301
  • Haftlang F, Kim ES, Kwon J, et al. Extraordinary combination of strength and ductility in an additively manufactured Fe-based medium entropy alloy through in situ formed η-nanoprecipitate and heterogeneous microstructure. Addit Manuf. 2023;63(5):103421.
  • Choi YT, Asghari-Rad P, Bae JW, et al. Effect of phase interface on stretch-flangeability of metastable ferrous medium-entropy alloys. Mater Sci Eng A. 2022;852:143683. doi:10.1016/j.msea.2022.143683
  • Porter DA, Easterling KE, Sherif MY. Phase transformations in metals and alloys. New York: CRC Press; 2021.
  • Sohrabi MJ, Mirzadeh H, Sadeghpour S, et al. Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. Int J Plast. 2023;160:103502. doi:10.1016/j.ijplas.2022.103502
  • Haftlang F, Asghari-Rad P, Moon J, et al. Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperature. Scr Mater. 2021;202:114013. doi:10.1016/j.scriptamat.2021.114013
  • Niu HZ, Chen YF, Zhang YS, et al. Phase transformation and dynamic recrystallization behavior of a β-solidifying γ-TiAl alloy and its wrought microstructure control. Mater Des. 2016;90:196–203. doi:10.1016/j.matdes.2015.10.133
  • Lee S, De Cooman BC. Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel. Metall Mater Trans. 2014;45:709–716. doi:10.1007/s11661-013-2047-6
  • Moyer JM, GS A. The volume expansion accompanying the martensitie transformation in Iron-Carbon alloys. Metall Trans A. 1975;6:1785–1791. doi:10.1007/BF02642308
  • Karthik GM, Kim ES, Sathiyamoorthi P, et al. Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel. Addit Manuf. 2021;47:102314.
  • Li S-H, Zhao Y, Kumar P, et al. Effect of initial dislocation density on the plastic deformation response of 316L stainless steel manufactured by directed energy deposition. Mater Sci Eng A. 2022;851:143591. doi:10.1016/j.msea.2022.143591
  • He Y, Gao J, He Y, et al. The mechanisms of γ (fcc) → ε (hcp) → α’ (bcc) and direct γ (fcc) → α’ (bcc) martensitic transformation in a gradient austenitic stainless steel. J Mater Sci. 2022;57:5230–5240. doi:10.1007/s10853-022-06936-z
  • Stringfellow RG, Parks DM, Olson GB. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformation in metastable austenitic steels. Acta Metall Mater. 1992;40(7):1703–1716. doi:10.1016/0956-7151(92)90114-T
  • Polatidis E, Haidemenopoulos GN, Krizan D, et al. The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: experimental investigation and modelling the transformation kinetics. Mater Sci Eng A. 2021;800:140321. doi:10.1016/j.msea.2020.140321
  • Haridas RS, Agrawal P, Mishra RS. Modeling the work hardening behavior in metastable high entropy alloys. Mater Sci Eng A. 2021;823:141778. doi:10.1016/j.msea.2021.141778
  • Dan WJ, Li SH, Zhang WG, et al. The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel. Mater Des. 2008;29(3):604–612. doi:10.1016/j.matdes.2007.02.019
  • Lloyd JT, Field DM, Limmer KR. A four parameter hardening model for TWIP and TRIP steels. Mater Des. 2020;194:108878. doi:10.1016/j.matdes.2020.108878
  • Gonoring TB, de Miranda Salustre MG, Caetano GA, et al. A constitutive model for the uniaxial tensile plastic behavior of metals based on the instantaneous strain-hardening exponent. J Mater Res Technol. 2022;20:2421–2443. doi:10.1016/j.jmrt.2022.07.189
  • Lee S, Estrin Y, De Cooman BC. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall Mater Trans. 2013;44:3136–3146. doi:10.1007/s11661-013-1648-4