657
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

800oC-stable D022 superlattice in a NiCrFe-based medium entropy alloy

, , , , , , , , & show all
Pages 172-179 | Received 03 Nov 2023, Published online: 31 Jan 2024

References

  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158. doi:10.1126/science.1254581
  • Hilhorst A, Jacques PJ, Pardoen T. Towards the best strength, ductility, and toughness combination: high entropy alloys are excellent, stainless steels are exceptional. Acta Mater. 2023;260:119280. doi:10.1016/j.actamat.2023.119280
  • Yang B, Ma L, Zhao P. Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys. Mater. Sci. Eng.: A. 2023;863:144524. doi:10.1016/j.msea.2022.144524
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081
  • Lin K-H, Tseng C-M, Chueh C-C, et al. Different lattice distortion effects on the tensile properties of Ni-W dilute solutions and CrFeNi and CoCrFeMnNi concentrated solutions. Acta Mater. 2021;221:117399. doi:10.1016/j.actamat.2021.117399
  • Huang H, Wang J, Yang H, et al. Strengthening CoCrNi medium-entropy alloy by tuning lattice defects. Scr. Mater. 2020;188:216–221. doi:10.1016/j.scriptamat.2020.07.027
  • Sun SJ, Tian YZ, Lin HR, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng.: A. 2018;712:603–607. doi:10.1016/j.msea.2017.12.022
  • Zhao YL, Yang T, Li YR, et al. Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Mater. 2020;188:517–527. doi:10.1016/j.actamat.2020.02.028
  • He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Mater. 2019;167:275–286. doi:10.1016/j.actamat.2019.01.048
  • Lin M, Yang Z, Shi X, et al. Effective combination of solid solution strengthening and precipitation hardening in NiCrFeWTiAl multi-principal element alloys. J. Alloys Compd. 2023;933:167738. doi:10.1016/j.jallcom.2022.167738
  • Haftlang F, Kim HS. A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing. Mater. Des. 2021;211:110161. doi:10.1016/j.matdes.2021.110161
  • Gong X, Xu W-W, Cui C, et al. Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations. Mater. Des. 2020;196:109174. doi:10.1016/j.matdes.2020.109174
  • He F, Wang Z, Wang J, et al. Abnormal γ″ - ϵ phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scr. Mater. 2018;146:281–285. doi:10.1016/j.scriptamat.2017.12.009
  • Shi R, McAllister DP, Zhou N, et al. Growth behavior of γ'/γ'’ coprecipitates in Ni-Base superalloys. Acta Mater. 2019;164:220–236. doi:10.1016/j.actamat.2018.10.028
  • Pickering EJ, Mathur H, Bhowmik A, et al. Grain-boundary precipitation in Allvac 718Plus. Acta Mater. 2012;60(6):2757–2769. doi:10.1016/j.actamat.2012.01.042
  • Theska F, Nomoto K, Godor F, et al. On the early stages of precipitation during direct ageing of Alloy 718. Acta Mater. 2020;188:492–503. doi:10.1016/j.actamat.2020.02.034
  • Fu SH, Dong JX, Zhang MC, et al. Alloy design and development of INCONEL718 type alloy. Mater. Sci. Eng.: A. 2009;499(1):215–220.
  • Detor AJ, DiDomizio R, Sharghi-Moshtaghin R, et al. Enabling large superalloy parts using compact coprecipitation of γ′ and γ′′. Metall Mater Trans A. 2018;49(3):708–717. doi:10.1007/s11661-017-4356-7
  • Qiao Z, Li C, Zhang H-j, et al. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations. Int. J. Miner. Metall. 2020;27(8):1123–1132. doi:10.1007/s12613-019-1949-8
  • Cozar R, Pineau A. Morphology of y’ and y” precipitates and thermal stability of inconel 718 type alloys. Metallurgical Transactions. 1973;4(1):47–59. doi:10.1007/BF02649604
  • Mignanelli PM, Jones NG, Pickering EJ, et al. Gamma-gamma prime-gamma double prime dual-superlattice superalloys. Scr. Mater. 2017;136:136–140. doi:10.1016/j.scriptamat.2017.04.029
  • Kobayashi S, Sato K, Hayashi E, et al. Alloying effects on the phase equilibria among Ni(A1), Ni3Al(L12) and Ni3 V(D022) phases. Intermetallics. 2012;23:68–75. doi:10.1016/j.intermet.2011.12.008
  • Xiong ZY, Xu WW, Gong XG, et al. Accelerating optimization of IN718 by mapping alloying effects on phase stabilities and mechanical properties using high-throughput calculations. Mater. Des. 2022;217:110603. doi:10.1016/j.matdes.2022.110603
  • Gao X, Hu R, Luo G. The effect of Ti on precipitation of fully coherent DO22 superlattice in an Ni-Cr-W-based superalloy. Scr. Mater. 2017;134:15–19. doi:10.1016/j.scriptamat.2017.02.037
  • Jain H, Shadangi Y, Chakravarty D, et al. Low-density Fe40Mn19Ni15Al15Si10C1 high entropy steel processed by mechanical alloying and spark plasma sintering: Phase evolution, microstructure and mechanical properties. Mater. Sci. Eng.: A. 2023;869:144776. doi:10.1016/j.msea.2023.144776
  • Jain H, Shadangi Y, Chakravarty D, et al. High entropy steel processed through mechanical alloying and spark plasma sintering: alloying behaviour, thermal stability and mechanical properties. Mater. Sci. Eng.: A. 2022;856:144029. doi:10.1016/j.msea.2022.144029
  • Streitenberger P. Analytical description of phase coarsening at high volume fractions. Acta Mater 2013;61(13):5026–5035. doi:10.1016/j.actamat.2013.04.042
  • Xia GH, Ma ZL, Xu ZQ, et al. Novel high-entropy alloys with high-density ϵ-D019 and abnormal phase transformation. Scr. Mater. 2021;199:113893. doi:10.1016/j.scriptamat.2021.113893
  • Li RB, Yao M, Liu WC, et al. Isolation and determination for δ, γ′ and γ″ phases in Inconel 718 alloy. Scr. Mater. 2002;46(9):635–638. doi:10.1016/S1359-6462(02)00041-6
  • Jouiad M, Marin E, Devarapalli RS, et al. Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging. Mater. Des. 2016;102:284–296. doi:10.1016/j.matdes.2016.04.048
  • Jianxin D, Xishan X, Shouhua Z. Coarsening behavior of γ″ precipitates in modified inconel 718 superalloy. Scr Metall Mater. 1995;33(12):1933–1940. doi:10.1016/0956-716X(95)00446-3
  • Han Y-f, Deb P, Chaturvedi MC. Coarsening behaviour of γ″- and γ′-particles in Inconel alloy 718. Met Sci. 1982;16(12):555–562. doi:10.1179/030634582790427118
  • Yang T, Zhao YL, Liu WH, et al. Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning. Mater. Res. Lett. 2018;6(10):600–606. doi:10.1080/21663831.2018.1518276
  • Sudbrack CK, Ziebell TD, Noebe RD, et al. Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Mater. 2008;56(3):448–463. doi:10.1016/j.actamat.2007.09.042
  • Campbell CE, Boettinger WJ, Kattner UR. Development of a diffusion mobility database for Ni-base superalloys. Acta Mater. 2002;50(4):775–792. doi:10.1016/S1359-6454(01)00383-4
  • Zhang RY, Qin HL, Bi ZN, et al. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy. J. Mater. Sci. Technol. 2022;126:169–181. doi:10.1016/j.jmst.2022.03.018
  • Lu W, Luo X, Huang B, et al. Excellent thermal stability and their origins in γ′ precipitation-strengthened medium-entropy alloys. Scr. Mater. 2022;212:114576. doi:10.1016/j.scriptamat.2022.114576
  • Zhuang X, Antonov S, Li L, et al. Effect of alloying elements on the coarsening rate of γʹ precipitates in multi-component CoNi-based superalloys with high Cr content. Scr. Mater. 2021;202:114004. doi:10.1016/j.scriptamat.2021.114004
  • He F, Zhang K, Yeli G, et al. Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase. Scr. Mater. 2020;183:111–116. doi:10.1016/j.scriptamat.2020.03.030
  • Wang F, Guo Y, Liu Q, et al. A novel D022 precipitation-hardened Ni2.1CoCrFe0.5Nb0.2 high entropy alloy with outstanding tensile properties by additive manufacturing. Virtual Phys Prototyp. 2023;18(1):e2147553. doi:10.1080/17452759.2022.2147553
  • Zhou K, Wang Z, He F, et al. A precipitation-strengthened high-entropy alloy for additive manufacturing. Addit. Manufact. 2020;35:101410. doi:10.1016/j.addma.2020.101410
  • Pan Y, Dong A, Zhou Y, et al. Enhanced strength-ductility synergy in a novel V-containing γ″-strengthened CoCrNi-based multi-component alloy. Mater. Sci. Eng.: A. 2021;816:141289. doi:10.1016/j.msea.2021.141289
  • Xue P, Zhu L, Xu P, et al. Effect of heat treatment on microstructure and mechanical properties of in-situ synthesized Ni2CrCoNb0.16 multi-principal element alloy manufactured by directed energy deposition. Mater. Sci. Eng.: A. 2023;862:144398. doi:10.1016/j.msea.2022.144398
  • Zhou H, Lin Y, Chen F, et al. Effect of precipitation behavior on mechanical properties of a Nb-containing CoCrNi-based high-entropy alloy. Met. Mater. Int. 2023;29(3):674–692. doi:10.1007/s12540-022-01265-x
  • Gao X, Hu R, Yang J. The effect of Ni3(Cr0.2W0.4Ti0.4) particles with DO22 structure on the deformation mode and mechanical properties of the aged Ni-Cr-W-Ti alloy. Scr. Mater. 2018;153:44–48. doi:10.1016/j.scriptamat.2018.04.029
  • Lu W, Luo X, Yang Y, et al. Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties. J. Alloys Compd. 2020;833:155074. doi:10.1016/j.jallcom.2020.155074
  • Marchese G, Lorusso M, Parizia S, et al. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater. Sci. Eng.: A. 2018;729:64–75. doi:10.1016/j.msea.2018.05.044
  • Kermani F, Shoja-Razavi R, Zangenemadar K, et al. An investigation into the effect of scanning pattern and heat treatment on the mechanical properties of Inconel 718 in the direct metal deposition process. J. Mater. Res. Technol. 2023;24:4743–4755. doi:10.1016/j.jmrt.2023.04.109