0
Views
0
CrossRef citations to date
0
Altmetric
Original Report

High magnetic field-induced grain refinement of undercooled Inconel 718 superalloy

, , , &
Pages 617-625 | Received 05 Mar 2024, Published online: 18 Jun 2024

References

  • Liu L, Zhang J, Ai C. Nickel-based superalloys. Encycl Mater Met Alloy. 2022;1:294–304. doi:10.1016/B978-0-12-803581-8.12093-4
  • Gribbin S, Ghorbanpour S, Ferreri NC, et al. Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures. Mater Charact. 2019;149:184–197. doi:10.1016/j.matchar.2019.01.028
  • Du B, Yang J, Cui C, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy. Mater Des. 2015;65:57–64. doi:10.1016/j.matdes.2014.08.059
  • Wang Y, He J, Hu P, et al. Exceptional cryogenic tensile properties of K4169 superalloy by micro-grain casting process. Mater Des. 2023;236:112450. doi:10.1016/j.matdes.2023.112450
  • Garcin T, Schmitt JH, Militzer M. In-situ laser ultrasonic grain size measurement in superalloy INCONEL 718. J Alloys Compd. 2016;670:329–336. doi:10.1016/j.jallcom.2016.01.222
  • Tsai Y-L, Wang S-F, Bor H-Y, et al. Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures. Mater Sci Eng A. 2013;571:155–160. doi:10.1016/j.msea.2013.02.002
  • Mullis AM, Haque N. Evidence for dendritic fragmentation in as-solidified samples of deeply undercooled melts. J Cryst Growth. 2020;529:125276. doi:10.1016/j.jcrysgro.2019.125276
  • Xu X, Hao Y, Wu Q, et al. Microstructure refinement mechanisms in undercooled solidification of binary and ternary nickel based alloys. J Mater Res Technol. 2023;24:737–758. doi:10.1016/j.jmrt.2023.03.004
  • Walker JL. The physical chemistry of process metallurgy. New York: Interscience; 1959.
  • Li JF, Jie WQ, Yang GC, et al. Solidification structure formation in undercooled Fe–Ni alloy. Acta Mater. 2002;50:1797–1807. doi:10.1016/S1359-6454(02)00032-0
  • Li M, Ishikawa T, Nagashio K, et al. A comparative EBSP study of microstructure and microtexture formation from undercooled Ni99B1 melts solidified on an electrostatic levitator and an electromagnetic levitator. Acta Mater. 2006;54:3791–3799. doi:10.1016/j.actamat.2006.04.010
  • Zhang T, Liu F, Wang HF, et al. Grain refinement in highly undercooled solidification of Ni85Cu15 alloy melt: direct evidence for recrystallization mechanism. Scr Mater. 2010;63:43–46. doi:10.1016/j.scriptamat.2010.03.006
  • Chen Z, Liang T, Zhang Y, et al. TEM investigations of recrystallization in rapidly solidified Ni-Fe-Pb ternary alloy. Mater Charact. 2017;127:73–76. doi:10.1016/j.matchar.2017.02.002
  • Liu W, Sha S, Cai X, et al. In-situ observation of S/L interface migration and mechanical property increase of Inconel 600 alloy prepared by electromagnetic levitation. J Alloys Compd. 2021;867:159036. doi:10.1016/j.jallcom.2021.159036
  • Andreoli AF, Shuleshova O, Witusiewicz VT, et al. In situ study of non-equilibrium solidification of CoCrFeNi high-entropy alloy and CrFeNi and CoCrNi ternary suballoys. Acta Mater. 2021;212:116880. doi:10.1016/j.actamat.2021.116880
  • Li X, Gagnoud A, Fautrelle Y, et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater. 2012;60:3321–3332. doi:10.1016/j.actamat.2012.02.019
  • Du D, Fautrelle Y, Ren Z, et al. Effect of a high magnetic field on the growth of ternary Al-Cu-Ag alloys during directional solidification. Acta Mater. 2016;121:240–256. doi:10.1016/j.actamat.2016.09.016
  • Xuan W, Lan J, Liu H, et al. Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification. Metall Mater Trans A. 2017;48:3804–3813. doi:10.1007/s11661-017-4135-5
  • Chen X, Zhong Y, Zheng T, et al. Refinement of primary Si in the bulk solidified Al-20 wt.%Si alloy assisting by high static magnetic field and phosphorus addition. J Alloys Compd. 2017;714:39–46. doi:10.1016/j.jallcom.2017.04.085
  • Liu C, Zhong Y, Shen Z, et al. Effect of an axial high static magnetic field on the crystal orientation and magnetic property of Fe-4.5 wt% Si alloy during bulk solidification. Mater Lett. 2019;247:189–192. doi:10.1016/j.matlet.2019.03.066
  • Zheng T, Zhou B, Wang J, et al. Compression properties enhancement of Al-Cu alloy solidified under a 29 T high static magnetic field. Mater Sci Eng A. 2018;733:170–178. doi:10.1016/j.msea.2018.07.013
  • Deng N, Wang J, Wang J, et al. Microstructure and properties of AlCoCrCuFeNi high-entropy alloy solidified under high magnetic field. Mater Lett. 2021;285:129182. doi:10.1016/j.matlet.2020.129182
  • He Y, Zhang Y, Bu F, et al. Origin identification and regulation of BCC precipitation in a CoCrFeNi high entropy alloy. Mater Res Lett. 2024;12:306–314. doi:10.1080/21663831.2024.2323033
  • Wang J, He Y, Li J, et al. Experimental platform for solidification and in-situ magnetization measurement of undercooled melt under strong magnetic field. Rev Sci Instrum. 2015;86:025102. doi:10.1063/1.4906931
  • Peng Z, Xie F, Zhang J, et al. Effect of undercooling on microstructure evolution in IN718 superalloy. Rare Met Mater Eng. 2013;42:1988–1992. doi:10.1016/S1875-5372(14)60012-6
  • Zhang K, Xie F, Hu R, et al. Relationship between microstructure and mechanical properties of undercooled K4169 superalloy. Trans Nonferrous Met Soc China. 2016;26:1885–1891. doi:10.1016/S1003-6326(16)64303-0
  • Brandon D. The structure of high-angle grain boundaries. Acta Metall. 1966;14:1479–1484. doi:10.1016/0001-6160(66)90168-4
  • Krishnan S, Price DL. X-ray diffraction from levitated liquids. J Phys Condens Matter. 2000;12:R145–R176. doi:10.1088/0953-8984/12/12/201
  • Rappaz M, Jarry P, Kurtuldu G, et al. Solidification of metallic alloys: does the structure of the liquid matter? Metall Mater Trans A. 2020;51:2651–2664. doi:10.1007/s11661-020-05770-9
  • Monier L, Buttard M, Veron M, et al. On the origin of grain refinement and twin boundaries in as-fabricated austenitic stainless steels produced by laser powder bed fusion. Addit Manuf. 2023;61:103351. doi:10.1016/j.addma.2022.103351
  • Shen RR, Efsing P. Overcoming the drawbacks of plastic strain estimation based on KAM. Ultramicroscopy. 2018;184:156–163. doi:10.1016/j.ultramic.2017.08.013
  • Mu Y, Xu P, Liang Y, et al. Improving the tensile ductility in the fully pearlitic steel using sequential refinement of colony and laminated structure. Mater Sci Eng A. 2022;851:143642. doi:10.1016/j.msea.2022.143642
  • Yang L, Liu LJ, Qin QY, et al. Role of remelting in grain refinement of undercooled single-phase alloys. Metall Mater Trans A. 2022;53:3100–3109. doi:10.1007/s11661-022-06730-1
  • Shercliff JA. Thermoelectric magnetohydrodynamics. J Fluid Mech. 1979;91:231–251. doi:10.1017/S0022112079000136
  • Kao A, Gao J, Pericleous K. Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites. Philos Trans R Soc A Math Phys Eng Sci. 2018;376:20170206. doi:10.1098/rsta.2017.0206
  • Cai B, Kao A, Boller E, et al. Revealing the mechanisms by which magneto-hydrodynamics disrupts solidification microstructures. Acta Mater. 2020;196:200–209. doi:10.1016/j.actamat.2020.06.041
  • Fan X, Shevchenko N, Tonry C, et al. Controlling solute channel formation using magnetic fields. Acta Mater. 2023;256:119107. doi:10.1016/j.actamat.2023.119107
  • Zhao Y, Hou L, Li X, et al. Solute segregation behavior of nickel-based single crystal superalloys directionally solidified under transverse static magnetic field. Mater Charact. 2023;200:112914. doi:10.1016/j.matchar.2023.112914
  • Zhao Y, Su H, Fan G, et al. Tailoring microstructure and microsegregation in a directionally solidified Ni-based SX superalloy by a weak transverse static magnetic field. Acta Metall Sin. 2022;35:1164–1174. doi:10.1007/s40195-022-01372-z
  • Gao J, Han M, Kao A, et al. Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection. Acta Mater. 2016;103:184–191. doi:10.1016/j.actamat.2015.10.014