254
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Superior creep resistance in a γ′-strengthened Co-based single-crystal superalloy at 760°C and ∼90% yield strength

, , &
Pages 626-634 | Received 30 Oct 2023, Published online: 24 Jun 2024

References

  • Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys. Science. 2006;312:90–91. doi:10.1126/science.1121738
  • Suzuki A, Inui H, Pollock TM. L12-strengthened cobalt-base superalloys. Annu Rev Mater Res. 2015;45:345–368. doi:10.1146/annurev-matsci-070214-021043
  • Titus MS, Suzuki A, Pollock TM. Creep and directional coarsening in single crystals of new γ-γ′ cobalt-base alloys. Scr Mater. 2012;66:574–577. doi:10.1016/j.scriptamat.2012.01.008
  • Lee CS. Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys. Tucson: The University of Arizona; 1971.
  • Wu X, Makineni SK, Liebscher CH, et al. Unveiling the Re effect in Ni-based single crystal superalloys. Nat Commun. 2020;11:389, doi:10.1038/s41467-019-14062-9
  • Reed RC. The superalloys fundamentals and applications. Cambridge: Cambridge University Press; 2006.
  • Caron P, et al. High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. In: Pollock TM, Kissinger RD, Bowman RR, editor. Superalloys 2000. Warrendale, PA: TMS; 2000. p. 737–746.
  • Rae CMF, Reed RC. Primary creep in single crystal superalloys: origins, mechanisms and effects. Acta Mater. 2007;55:1067–1081. doi:10.1016/j.actamat.2006.09.026
  • Rae CMF, Matan N, Reed RC. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750°C and 750 MPa. Mater Sci Eng A. 2001;300:125–134. doi:10.1016/S0921-5093(00)01788-3
  • Li W, Li L, Antonov S, et al. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys. J Alloys Compd. 2020;826:154182, doi:10.1016/j.jallcom.2020.154182
  • Li W, Li L, Antonov S, et al. High-throughput exploration of alloying effects on the microstructural stability and properties of multi-component CoNi-base superalloys. J Alloys Compd. 2021;881:160618, doi:10.1016/j.jallcom.2021.160618
  • Titus MS, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 2015;89:423–437. doi:10.1016/j.actamat.2015.01.050
  • Lu S, Antonov S, Li LF, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa. Metall Mater Trans A. 2018;49:4079–4089. doi:10.1007/s11661-018-4776-z
  • Lenz M, Eggeler YM, Müller J, et al. Tension/compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Mater. 2019;166:597–610. doi:10.1016/j.actamat.2018.12.053
  • Shi L, Yu JJ, Cui CY, et al. The creep deformation behavior of a single-crystal Co-Al-W-base superalloy at 900°C. Mater Sci Eng A. 2015;635:50–58. doi:10.1016/j.msea.2015.03.063
  • Titus MS, Rettberg LH, Pollock TM, et al. High temperature creep of γ′-containing CoNi-based superalloys. In: Hardy M, Huron E, Glatzel U, editor. Superalloys 2016. Warrendale, PA: TMS; 2016. p. 141–148.
  • Lu S, Luo Z, Li L, et al. Comparison of creep mechanisms between Co-Al-W- and CoNi-based single crystal superalloys at low temperature and high stresses. Metall Mater Trans A. 2023;54:1597–1607. doi:10.1007/s11661-022-06892-y
  • Lu S, Zou M, Zhang X, et al. Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys. Adv Eng Mater. 2023;25:2201257, doi:10.1002/adem.202201257
  • Li W, Li L, Wei C, et al. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches. J Mater Sci Technol. 2021;80:139–149. doi:10.1016/j.jmst.2020.10.080
  • Lu S, Luo Z, Lu F, et al. Creep performance in a CoNi-based single crystal superalloy with super-high γ′ volume fraction at 760 °C and equivalent high stress. J Mater Res Technol. 2024;29:4870–4880. doi:10.1016/j.jmrt.2024.02.217
  • Ge Z, Xie G, Lu Y, et al. Influence of Ta on the intermediate temperature creep behavior of a single crystal superalloy. Mater Sci Eng A. 2022;831:142160, doi:10.1016/j.msea.2021.142160
  • Long H, Liu Y, Kong D, et al. Shearing mechanisms of stacking fault and anti-phase-boundary forming dislocation pairs in the γ′ phase in Ni-based single crystal superalloy. J Alloys Compd. 2017;724:287–295. doi:10.1016/j.jallcom.2017.07.020
  • Diologent F, Caron P. On the creep behavior at 1033K of new generation single-crystal superalloys. Mater Sci Eng A. 2004;385:245–257. doi:10.1016/S0921-5093(04)00925-6
  • Han GM, Yu JJ, Sun YL, et al. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99. Mater Sci Eng A. 2010;527:5383–5390. doi:10.1016/j.msea.2010.05.051
  • Smith TM, Zarkevich NA, Egan AJ, et al. Utilizing local phase transformation strengthening for nickel-base superalloys. Commun Mater. 2021;2:106, doi:10.1038/s43246-021-00210-6
  • Smith TM, Good BS, Gabb TP, et al. Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys. Acta Mater. 2019;172:55–65. doi:10.1016/j.actamat.2019.04.038
  • Smith TM, Esser BD, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys. Nat Commun. 2016;7:13434, doi:10.1038/ncomms13434
  • Wu X, Wollgramm P, Somsen C, et al. Double minimum creep of single crystal Ni-base superalloys. Acta Mater. 2016;112:242–260. doi:10.1016/j.actamat.2016.04.012
  • Xue F, Zhou HJ, Shi QY, et al. Creep behavior in a γ′ strengthened Co–Al–W–Ta–Ti single-crystal alloy at 1000 °C. Scr Mater. 2015;97:37–40. doi:10.1016/j.scriptamat.2014.10.015
  • Zhou H, Li L, Antonov S, et al. Sub/micro-structural evolution of a Co-Al-W-Ta-Ti single crystal superalloy during creep at 900°C and 420 MPa. Mater Sci Eng A. 2020;772:138791, doi:10.1016/j.msea.2019.138791
  • Lu S, Antonov S, Li LF, et al. Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress. Acta Mater. 2020;190:16–28. doi:10.1016/j.actamat.2020.03.015
  • Hoeft H, Schwaab P. Investigations towards optimizing EDS analysis by the Cliff-Lorimer method in scanning transmission electron microscopy. X-Ray Spectrom. 1988;17:201–208. doi:10.1002/xrs.1300170509
  • Drew GL, Reed RC, Kakehi K, et al. Single crystal superalloys: the transition from primary to secondary creep. In: Green KA, Pollock TM, Harada H, editor. Superalloys 2004. Warrendale, PA: TMS; 2004. p. 127–136.
  • Qu P, Yang W, Liu C, et al. Creep anisotropy dominated by orientation rotation in Ni-based single crystal superalloys at 750 °C/750 MPa. J Mater Sci Technol. 2024;186:91–103. doi:10.1016/j.jmst.2023.10.055
  • Zhou HJ, Chang H, Feng Q. Transient minimum creep of a γ′ strengthened Co-base single-crystal superalloy at 900 °C. Scr Mater. 2017;135:84–87. doi:10.1016/j.scriptamat.2017.03.031
  • Sharma A, Mondal C, Makineni SK, et al. Exploring the correlation between microscopic mechanisms and macroscopic behaviour in creep of a directionally solidified tungsten-free γ/γ′ CoNi-base superalloy. Acta Mater. 2022;228:117738, doi:10.1016/j.actamat.2022.117738
  • Hobbs RA, Brewster GJ, Rae CMF, et al. Evaluation of ruthenium-bearing single crystal superalloys-a design of experiments. In: Reed RC, Green KA, Caron P, editor. Superalloys 2008. Warrendale, PA: TMS; 2008. p. 171–180.
  • Titus MS, Rhein RK, Wells PB, et al. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects. Sci Adv. 2016;2:e1601796, doi:10.1126/sciadv.1601796
  • Titus MS, Eggeler YM, Suzuki A, et al. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Mater. 2015;82:530–539. doi:10.1016/j.actamat.2014.08.033
  • Lu S, Antonov S, Xue F, et al. Segregation-assisted phase transformation and anti-phase boundary formation during creep of a γ′-strengthened Co-based superalloy at high temperatures. Acta Mater. 2021;215:117099, doi:10.1016/j.actamat.2021.117099
  • Parsa AB, Wollgramm P, Buck H, et al. Advanced scale bridging microstructure analysis of single crystal Ni-base superalloys. Adv Eng Mater. 2015;17:216–230. doi:10.1002/adem.201400136
  • Wollgramm P, Wu X, Eggeler G, et al. On the temperature dependence of creep behavior of Ni-base single crystal superalloys. In: Hardy M, Huron E, Glatzel U, editor. Superalloys 2016. Warrendale, PA: TMS; 2016. p. 711–718.
  • Yan H-Y, Coakley J, Vorontsov VA, et al. Alloying and the micromechanics of Co–Al–W–X quaternary alloys. Mater Sci Eng A. 2014;613:201–208. doi:10.1016/j.msea.2014.05.044
  • Brückner U, Epishin A, Link T. Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys. Acta Mater. 1997;45:5223–5231. doi:10.1016/S1359-6454(97)00163-8
  • Diologent F, Caron P. Creep behaviour at 760°C of two nickel-based single crystal superalloys. Mater Sci Forum. 2003;426–432:725–730. doi: 10.4028/www.scientific.net/MSF.426-432.725