0
Views
0
CrossRef citations to date
0
Altmetric
Original Report

Achieving superior strength-plasticity performance in laser powder bed fusion of AlSi10Mg via high-speed scanning remelting

, , , , , , & show all
Pages 668-677 | Received 15 Apr 2024, Published online: 03 Jul 2024

References

  • McCaw JCS, Fleck TJ, Tejada-Ortigoza V, et al. Vibration-assisted printing of highly viscous food. Addit Manuf. 2022;56:102851.
  • Kuang X, Rong Q, Belal S, et al. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science. 2023;382:1148–1151. doi:10.1126/science.adi1563
  • Wiese M, Thiede S, Herrmann C. Rapid manufacturing of automotive polymer series parts: a systematic review of processes, materials and challenges. Addit Manuf. 2020;36:101582.
  • Gerges T, Semet V, Lombard P, et al. Rapid 3D-plastronics prototyping by selective metallization of 3D printed parts. Addit Manuf. 2023;73:103673.
  • Gradl P, Mireles OR, Katsarelis C, et al. Advancement of extreme environment additively manufactured alloys for next generation space propulsion applications. Acta Astronaut. 2023;211:483–497. doi:10.1016/j.actaastro.2023.06.035
  • Dixit S, Liu S. Laser additive manufacturing of high-strength aluminum alloys: challenges and strategies. J Manuf Mater Process. 2022;6:156.
  • Zhang H, Zhu H, Nie X, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater. 2017;134:6–10. doi:10.1016/j.scriptamat.2017.02.036
  • Ma S, Shang Z, Shang A, et al. Additive manufacturing enabled synergetic strengthening of bimodal reinforcing particles for aluminum matrix composites. Addit Manuf. 2023;70:103543.
  • Bayoumy D, Schliephake D, Dietrich S, et al. Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting. Mater Des. 2021;198:109317. doi:10.1016/j.matdes.2020.109317
  • Wang Z, Lin X, Kang N, et al. Making selective-laser-melted high-strength Al–Mg–Sc–Zr alloy tough via ultrafine and heterogeneous microstructure. Scr Mater. 2021;203:114052. doi:10.1016/j.scriptamat.2021.114052
  • Mehta A, Zhou L, Huynh T, et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit Manuf. 2021;41:101966.
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369. doi:10.1038/nature23894
  • Chen Y, Ren Y, Li K, et al. Laser powder bed fusion of oxidized microscale SiC-particle-reinforced AlSi10Mg matrix composites: microstructure, porosity, and mechanical properties. Mater Sci Eng A. 2023;870:144860. doi:10.1016/j.msea.2023.144860
  • Gao C, Liu Z, Xiao Z, et al. Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: microstructural evolution and mechanical properties. J Alloys Compd. 2021;853:156722. doi:10.1016/j.jallcom.2020.156722
  • Zhao Z, Bai P, Misra RDK, et al. Alsi10mg alloy nanocomposites reinforced with aluminum-coated graphene: selective laser melting, interfacial microstructure and property analysis. J Alloys Compd. 2019;792:203–214. doi:10.1016/j.jallcom.2019.04.007
  • Zang C, Liu W, Zeng M, et al. The influence of NH3 plasma treatment on microstructure and mechanical property of AlSi10Mg alloy fabricated by selective laser melting. Mater Today Commun. 2023;34:105274. doi:10.1016/j.mtcomm.2022.105274
  • Lu Z, Han Y, Gao Y, et al. Effect of nano-Si3N4 reinforcement on the microstructure and mechanical properties of laser-powder-bed-fusioned AlSi10Mg composites. Crystals. 2022;12:366. doi:10.3390/cryst12030366
  • Zhang F, Zhang Z, Gu Q, et al. Microstructure and mechanical properties of nanoparticulate Y2O3 modified AlSi10Mg alloys manufactured by selective laser melting. Materials. 2023;16:1222. doi:10.3390/ma16031222
  • Feng Z, Wang G, Hao Z, et al. Influence of scale effect on surface morphology in laser powder bed fusion technology. Virtual Phys Prototy. 2024;19:e2336157.
  • Tan Q, Zhang J, Mo N, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit Manuf. 2020;32:101034.
  • Takata N, Kodaira H, Sekizawa K, et al. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater Sci Eng A. 2017;704:218–228. doi:10.1016/j.msea.2017.08.029
  • Girelli L, Tocci M, Gelfi M, et al. Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater Sci Eng, A. 2019;739:317–328. doi:10.1016/j.msea.2018.10.026
  • Wang CG, Zhu JX, Wang GW, et al. Effect of building orientation and heat treatment on the anisotropic tensile properties of AlSi10Mg fabricated by selective laser melting. J Alloys Compd. 2022;895:162665. doi:10.1016/j.jallcom.2021.162665
  • Wang LF, Sun J, Yu XL, et al. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Mater Sci Eng A. 2018;734:299–310. doi:10.1016/j.msea.2018.07.103
  • Padovano E, Badini C, Pantarelli A, et al. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion. J Alloys Compd. 2020;831:154822. doi:10.1016/j.jallcom.2020.154822
  • Pramod S, Naveen KM, Kesavan D. Effect of part orientation and low-temperature annealing on impact toughness of laser powder bed fusion-processed AlSi10Mg. J Mater Eng Perform. 2023;32:393–405. doi:10.1007/s11665-022-07083-x
  • Zyguła K, Nosek B, Pasiowiec H, et al. Mechanical properties and microstructure of AlSi10Mg alloy obtained by casting and SLM technique. World Sci News. 2018;104:456–466.
  • Zhou H, Song C, Yang Y, et al. Effect of axial static magnetic field on microstructure evolution, performance, and melt pool signals of AlSi10Mg fabricated by laser powder bed fusion. Opt Laser Technol. 2023;163:109316. doi:10.1016/j.optlastec.2023.109316
  • Du D, Haley JC, Dong A, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Mater Des. 2019;181:107923. doi:10.1016/j.matdes.2019.107923
  • Zhou J, Han X, Li H, et al. Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy. Mater Des. 2021;210:110092. doi:10.1016/j.matdes.2021.110092
  • Cao Y, Lin X, Wang QZ, et al. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg. J Mater Sci Technol. 2021;62:162–172. doi:10.1016/j.jmst.2020.04.066
  • Khosravani MR, Frohn-Sörensen P, Engel B, et al. Fracture behavior of double edge notch AlSi10Mg alloy fabricated by laser powder bed fusion. Theor Appl Fract Mech. 2024;130:104349. doi:10.1016/j.tafmec.2024.104349
  • ASTM E8/E8M-08. Standard test methods for tension testing of metallic materials. West Conshohocken (PA): ASTM International; 2013.
  • Azizi H, Ebrahimi A, Ofori-Opoku N, et al. Characterizing the microstructural effect of build direction during solidification of laser-powder bed fusion of Al-Si alloys in the dilute limit: a phase-field study. Acta Mater. 2021;214:116983. doi:10.1016/j.actamat.2021.116983
  • Kurz W, Fisher DJ. Fundamentals of solidification. Durnten-Zurich, Switzerland: Trans Tech Publications; 1992.
  • Easton MA, StJohn DH. Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater Sci Eng A. 2008;486:8–13. doi:10.1016/j.msea.2007.11.009
  • Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall. 1986;34:823–830. doi:10.1016/0001-6160(86)90056-8
  • Thijs L, Kempen K, Kruth JP, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819. doi:10.1016/j.actamat.2012.11.052
  • Delahaye J, Tchuindjang JT, Lecomte-Beckers J, et al. Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by selective laser melting. Acta Mater. 2019;175:160–170.
  • Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater. 2001;49:1051–1062. doi:10.1016/S1359-6454(00)00367-0
  • Kirka MM, Nandwana P, Lee Y, et al. Solidification and solid-state transformation sciences in metals additive manufacturing. Scr Mater. 2017;135:130–134. doi:10.1016/j.scriptamat.2017.01.005
  • Liu M, Fu H, Xu C, et al. Precipitation kinetics and hardening mechanism in Al-Si solid solutions processed by high pressure solution treatment. Mater Sci Eng A. 2018;712:757–764.
  • Shi S, Lin X, Wang L, et al. Investigations of the processing–structure–performance relationships of an additively manufactured AlSi10Mg alloy via directed energy deposition. J Alloys Compd. 2023;944:169050. doi:10.1016/j.jallcom.2023.169050
  • Li X, Yi D, Wu X, et al. Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J Alloys Compd. 2021;881:160459. doi:10.1016/j.jallcom.2021.160459
  • Maconachie T, Leary M, Zhang J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg. Mater Sci Eng A. 2020;788:139445. doi:10.1016/j.msea.2020.139445
  • Ch SR, Raja A, Nadig P, et al. Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater Sci Eng A. 2019;750:141–151.
  • Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol. 2017;243:48–61. doi:10.1016/j.jmatprotec.2016.11.029
  • Paul MJ, Liu Q, Best JP, et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 2021;211:116869. doi:10.1016/j.actamat.2021.116869
  • Zhao L, Macías JGS, Douillard T, et al. Unveiling damage sites and fracture path in laser powder bed fusion AlSi10Mg: comparison between horizontal and vertical loading directions. Mater Sci Eng A. 2021;807:140845. doi:10.1016/j.msea.2021.140845
  • Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des. 2015;65:417–424. doi:10.1016/j.matdes.2014.09.044
  • Larrosa NO, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy. Theor Appl Fract Mech. 2018;98:123–133.
  • Patakham U, Palasay A, Wila P, et al. MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg. Mater Sci Eng A. 2021;821:141602. doi:10.1016/j.msea.2021.141602
  • Uzan NE, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf. 2018;24:257–263.
  • Kiani P, Dupuy AD, Ma K, et al. Directed energy deposition of AlSi10Mg: single track nonscalability and bulk properties. Mater Des. 2020;194:108847. doi:10.1016/j.matdes.2020.108847
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.
  • Otani Y, Takata N, Suzuki A, et al. Microstructural origin of anisotropic tensile ductility of Al-Si alloy manufactured by laser powder bed fusion. Scr Mater. 2023;226:115259. doi:10.1016/j.scriptamat.2022.115259
  • Liu Q, Wu H, Paul MJ, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms. Acta Mater. 2020;201:316–328. doi:10.1016/j.actamat.2020.10.010
  • Eom YS, Park JM, Choi JW, et al. Fine-tuning of mechanical properties of additively manufactured AlSi10Mg alloys by controlling the microstructural heterogeneity. J Alloys Compd. 2023;956:170348. doi:10.1016/j.jallcom.2023.170348
  • Park JM, Choe J, Park HK, et al. Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure. Addit Manuf. 2020;35:101333.
  • Chen H, Patel S, Vlasea M, et al. Enhanced tensile plasticity of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scr Mater. 2022;221:114954. doi:10.1016/j.scriptamat.2022.114954
  • Li Z, Li Z, Tan Z, et al. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int J Plast. 2020;127:102640. doi:10.1016/j.ijplas.2019.12.003
  • Chen B, Moon SK, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr Mater. 2017;141:45–49. doi:10.1016/j.scriptamat.2017.07.025
  • Jiang Y, Xu R, Tan Z, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites. Carbon. 2019;146:17–27. doi:10.1016/j.carbon.2019.01.094