832
Views
34
CrossRef citations to date
0
Altmetric
Original Research Papers

Towards a more complete tool for coastal engineering: solitary wave generation, propagation and breaking in an SPH-based model

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 15-40 | Received 31 May 2018, Accepted 11 Dec 2018, Published online: 05 Jan 2019

References

  • Altomare, C., J. M. Domínguez, A. J. C. Crespo, J. González-Cao, T. Suzuki, M. Gómez-Gesteira, and P. Troch. 2017. “Long-Crested Wave Generation and Absorption for SPH-based DualSPHysics Model.” Coastal Engineering 127: 37–54. doi:10.1016/j.coastaleng.2017.06.004.
  • Altomare, C., J. M. Domínguez, A. J. C. Crespo, T. Suzuki, I. Caceres, and M. Gómez-Gesteira. 2015b. “Hybridization of the Wave Propagation Model SWASH and the Meshfree Particle Method SPH for Real Coastal Applications.” Coastal Engineering Journal 57: 1550024. doi:10.1142/S0578563415500242.
  • Altomare, C., T. Suzuki, J. M. Domínguez, A. Barreiro, A. J. C. Crespo, and M. Gómez-Gesteira. 2015a. “Numerical Wave Dynamics Using Lagrangian Approach: Wave Generation and Passive & Active Wave Absorption.” 10th SPHERIC International Workshop, Parma, Italy.
  • Altomare, C., G. Viccione, B. Tagliafierro, V. Bovolin, J. M. Domínguez, and A. J. C. Crespo. 2018. “Free-Surface Flow Simulations with Smoothed Particle Hydrodynamics Method Using High-Performance Computing,” Book Chapter in Comput. Fluid Dyn. - Basic Instruments.” Applied Sciences, InTech, Rijeka. doi:10.5772/intechopen.71362.
  • Aristodemo, F., G. Tripepi, D. D. Meringolo, and P. Veltri. 2017. “Solitary Wave-Induced Forces on Horizontal Circular Cylinders: Laboratory Experiments and SPH Simulations.” Coastal Engineering 129: 17–35. doi:10.1016/j.coastaleng.2017.08.011.
  • Baldock, T. E., D. T. Cox, T. Maddux, J. Killian, and L. Fayler. 2009. “Kinematics of Breaking Tsunami Wave Fronts: A Data Set from Large Scale Laboratory Experiments.” Coastal Engineering 56: 506–516. doi:10.1016/j.coastaleng.2008.10.011.
  • Barreiro, A., J. M. Domínguez, A. J. C. Crespo, H. González-Jorge, D. Roca, and M. Gómez-Gesteira. 2014. “Integration of UAV Photogrammetry and SPH Modelling of Fluids to Study Runoff on Real Terrains.” PloS one 9 (11): e111031. doi:10.1371/journal.pone.0111031.
  • Batchelor, G. K. 1974. Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.
  • Bernier, C., Y. Lin, J. E. Padgett, C. Dawson, P. Lomonaco, and D. Cox. 2017. “Large-Scale Laboratory Experiments of Wave Impacts on Vertical Cylinders.” DesignSafe-CI [publisher], Experiments dataset. doi:10.17603/DS27D4G.
  • Bernier, C., and J. E. Padgett. 2018. Dynamic Buckling of Aboveground Storage Tanks Subjected to Hurricane-Induced Waves. Structure Congress 2018. Fort Worth, TX: ASCE-SEI.
  • Canelas, R. B., A. J. C. Crespo, J. M. Domínguez, R. M. L. Ferreira, and M. Gómez-Gesteira. 2016. “SPH-DCDEM Model for Arbitrary Geometries in Free Surface Solid-Fluid Flows.” Computer Physics Communications 202: 131–140. doi:10.1016/j.cpc.2016.01.006.
  • Chan, I.-C., and P. L.-F. Liu. 2012. “On the Runup of Long Waves on a Plane Beach.” Journal of Geophysical Research 117: C08006. doi:10.1029/2012JC007994.
  • Clamond, D., and J.-R. Germain. 1999. “Interaction between a Stokes Wave Packet and a Solitary Wave.” European Journal of Mechanics - B/Fluids 18 (1): 67–91. doi:10.1016/S0997-7546(99)80006-5.
  • Crespo, A. J. C., C. Altomare, J. M. Domínguez, J. González-Cao, and M. Gómez-Gesteira. 2017. “Towards Simulating Floating Offshore Oscillating Water Column Converters with Smoothed Particle Hydrodynamics.” Coastal Engineering 126: 11–16. doi:10.1016/j.coastaleng.2017.05.001.
  • Crespo, A. J. C., J. M. Domínguez, B. D. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, and O. García-Feal. 2015. “DualSPHysics: open-source parallel CFD solver on SPH.” Computer Physics Communications 187: 204–216. doi:10.1016/j.cpc.2014.10.004.
  • Crespo, A. J. C., M. Gómez-Gesteira, and R. A. Dalrymple. 2007. “Boundary Conditions Generated by Dynamic Particles in SPH Methods.” CMC-Computers Materials & Continua 5 (3): 173–184.
  • Cunningham, L. S., B. D. Rogers, and G. Pringgana. 2014. “Tsunami Wave and Structure Interaction: An Investigation with Smoothed Particle Hydrodynamics.” ICE Proceedings- Engineering and Computational Mechanics 167 (EM3): 126–138.
  • Dalrymple, R. A., A. Hérault, G. Bilotta, and R. Jalali Farahani. 2010. “GPU-Accelerated SPH Model for Water Waves and Free Surface Flows.” In Proc. 32nd International Conference on Coastal Engineering, edited by J. M. Smith and P. Lynett. http://journals.tdl.org/ICCE/article/view/1449
  • Dalrymple, R. A., and O. Knio. 2000. “SPH modelling of water waves.” Proc., Coastal Dynamics 01, 779–787. Reston VA: ASCE.
  • De Padova, D., R. A. Dalrymple, and M. Mossa. 2014. “Analysis of the Artificial Viscosity in the Smoothed Particle Hydrodynamics Modelling of Regular Waves.” Journal of Hydraulic Research 1686: 1–13. doi:10.1080/00221686.2014.932853.
  • Domínguez, J. M., A. J. C. Crespo, and M. Gómez-Gesteira. 2013. “Optimization Strategies for CPU and GPU Implementations of a Smoothed Particle Hydrodynamics Method.” Computer Physics Communications 184 (3): 617–627. doi:10.1016/j.cpc.2012.10.015.
  • Gómez-Gesteira, M., B. D. Rogers, A. J. C. Crespo, R. A. Dalrymple, M. Narayanaswamy, and J. M. Dominguez. 2012. “SPHysics - Development of a Free-Surface Fluid Solver- Part 1: Theory and Formulations.” Computers & Geosciences. doi:10.1016/j.cageo.2012.02.029.
  • Goring, D. G. 1978. “Tsunamis - the Propagation of Long Waves onto a Shelf.” Rep. Kh-R-38, W. M. Keck Lab. of Hydraul. and Water Resour. Calif: California Inst. of Technol.
  • Goseberg, N., A. Wurpts, and T. Schlurmann. 2013. “Laboratory-Scale Generation of Tsunami and Long Waves.” Coastal Engineering 79 (Sep.): 57–74. ISSN 0378-3839. doi:10.1016/j.coastaleng.2013.04.006
  • Gotoh, H., and A. Khayyer. 2018. “On the State-Of-The-Art of Particle Methods for Coastal and Ocean Engineering.” Coastal Engineering Journal 60: 79–103. doi:10.1080/21664250.2018.1436243.
  • Guizien, K., and E. Barthélemy. 2002. “Accuracy of Solitary Wave Generation by a Piston Wave Maker.” Journal of Hydraulic Research 40 (3): 321–331. doi:10.1080/0022168020949994.
  • Han, S., T. Ha, and Y.-S. Cho. 2015. “Laboratory Experiments on Run-Up and Force of Solitary Waves.” Journal of Hydro-Environment Research 9 (4): 582–591. ISSN 1570-6443. doi: 10.1016/j.jher.2015.05.002.
  • Higuera, P., J. L. Lara, and I. J. Losada. 2013. “Simulating Coastal Engineering Processes with OpenFOAM.” Coastal Engineering 71: 119–134. doi:10.1016/j.coastaleng.2012.06.002.
  • Hsiao, S.-C., and T.-C. Lin. 2010. “Tsunami-Like Solitary Waves Impinging and Overtopping an Impermeable Seawall: Experiment and RANS Modeling.” Coastal Engineering 57 (1): 1–18. January. ISSN 0378-3839. doi:10.1016/j.coastaleng.2009.08.004.
  • Huang, Z., Y. Yao, S. Y. Sim, and Y. Yao. 2011. “Interaction of Solitary Waves with Emergent, Rigid Vegetation.” Ocean Engineering 38: 1080–1088. doi:10.1016/j.oceaneng.2011.03.003.
  • Jiang, C., X. Liu, Y. Yao, B. Deng, and J. Chen. 2017. “Numerical Investigation of Tsunami-Like Solitary Wave Interaction with a Seawall.” Journal of Earthquake and Tsunami 11: 1740006. doi:10.1142/S1793431117400061.
  • Khayyer, A., H. Gotoh, and S. D. Shao. 2008. “Corrected Incompressible SPH Method for Accurate Water-Surface Tracking in Breaking Waves.” Coastal Engineering 55 (3): 236–250. doi:10.1016/j.coastaleng.2007.10.001.
  • Li, Y., and F. Raichlen. 2002. “Non-Breaking and Breaking Solitary Wave Run-Up.” Journal of Fluid Mechanics 456: 295–318. doi:10.1017/S0022112001007625.
  • Liang, D., W. Jian, S. Shao, R. Chen, and K. Yang. 2017. “Incompressible SPH Simulation of Solitary Wave Interaction with Movable Seawalls.” Journal of Fluids and Structures 69: 72–88. ISSN 0889-9746. doi:10.1016/j.jfluidstructs.2016.11.015.
  • Lin, P. 2004. “A Numerical Study of Solitary Wave Interaction with Rectangular Obstacles.” Coastal Engineering 51 (1): 35–51. ISSN 0378-3839. doi: 10.1016/j.coastaleng.2003.11.005.
  • Liu, P. L.-F., and K. Al-Banaa. 2004. “Solitary Wave Runup and Force on a Vertical Barrier.” Journal of Fluid Mechanics 505: 225–233. doi:10.1017/S0022112004008547.
  • Lomonaco, P., D. Istrati, T. Maddux, I. Buckle, S. Yim, and T. Xiang. 2016. “Large-Scale Testing of Tsunami Impact Forces on Bridges.” In Proceedings of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16), Ottawa, Canada, May 10–13.
  • Madsen, P. A., D. R. Fuhrman, and H. A. Schäffer. 2008. “On the Solitary Wave Paradigm for Tsunamis.” Journal of Geophysical Research 113: C12012. doi:10.1029/2008JC004932.
  • Madsen, P. A., and H. A. Schäffer. 2010. “Analytical Solutions for Tsunami Runup on a Plane Beach: Single Waves, N-Waves and Transient Waves.” Journal of Fluid Mechanics 645: 27–57. doi:10.1017/S0022112009992485.
  • Maza, M., J. L. Lara, and I. J. Losada. 2015. “Tsunami Wave Interaction with Mangrove Forests: A 3-D Numerical Approach.” Coastal Engineering 98: 33–54. ISSN 0378-3839. doi:10.1016/j.coastaleng.2015.01.002.
  • Monaghan, J. J. 1992. “Smoothed Particle Hydrodynamics.” Annual Review of Astronomy and Astrophysics 30: 543–574. doi:10.1146/annurev.aa.30.090192.002551.
  • Monaghan, J. J., and A. Kos. 1999. “Solitary Waves on a Cretan Beach.” Journal of Waterway, Port, Coastal, and Ocean Engineering 125 (3): 145–155. doi:10.1061/(ASCE)0733-950X.
  • Monaghan, J. J., and A. Kos. 2000. “Scott Russell’s Wave Generator.” Physics of Fluids 12 (3): 622–630. doi:10.1063/1.870269.
  • Nistor, I., D. Palermo, T. Al Faesly, and A. Cornett. 2009. “Modelling of Tsunami-Induced Hydrodynamic Forces on Buildings.” 33rd IAHR Congress: Water Engineering for a Sustainable Environment, Vancouver, Canada, August 9–14.
  • Pringgana, G., L. S. Cunningham, and B. D. Rogers. 2015. “SPH Modelling of Tsunami-Induced Bore and Structure Interaction Using DualSPHysics.” In Proceedings of the 23rd UK Conference of the Association for Computational Mechanics in Engineering, Swansea: Swansea University, April 10.
  • Qu, K., X. Y. Ren, S. Kraatz, and E. J. Zhao. 2017. “Numerical Analysis of Tsunami-Like Wave Impact on Horizontal Cylinders.” Ocean Engineering 145: 316–333. ISSN 0029-8018. doi:10.1016/j.oceaneng.2017.09.027.
  • Raichlen, F. 1970. “Tsunamis: Some Laboratory and Field Observations.” In Proceedings of the 12th Coastal Engineering Conference, 2103–2122, 3 vols., American Society of Civil Engineering. doi:10.1159/000136056.
  • Rossetto, T., W. Allsop, I. Charvet, and D. I. Robinson. 2011. “Physical Modelling of Tsunami Using a New Pneumatic Wave Generator.” Coastal Engineering 58 (6): 517–527. doi:10.1016/j.coastaleng.2011.01.012.
  • Rota Roselli, R. A., G. Vernengo, C. Altomare, S. Brizzolara, L. Bonfiglio, and R. Guercio. 2018. “Ensuring Numerical Stability of Wave Propagation by Tuning Model Parameters Using Genetic Algorithms and Response Surface Methods.” Environmental Modelling & Software 103: 62–73. doi:10.1016/j.envsoft.2018.02.003.
  • Sarfaraz, M., and A. Pak. 2017. “SPH Numerical Simulation of Tsunami Wave Forces Impinged on Bridge Superstructures.” Coastal Engineering 121: 145–157. doi:10.1016/j.coastaleng.2016.12.005.
  • Serre, F. 1953. “Contribution a l’étude des écoulements permanents et variables dans les canaux.” La Houille Blanche 8: 374–388. doi:10.1051/lhb/1953034.
  • Shadloo, M. S., R. Weiss, M. Yildiz, and R. A. Dalrymple. 2015. “Numerical Simulation of Long Wave Runup for Breaking and Nonbreaking Waves.” International Journal of Offshore and Polar Engineering 25 (1): 1–7.
  • St-Germain, P., I. Nistor, R. Townsend, and T. Shibayama. 2014. “Smoothed-Particle Hydrodynamics Numerical Modeling of Structures Impacted by Tsunami Bores.” Journal of Waterway, Port, Coastal, and Ocean Engineering: 66–81. doi:10.1061/(ASCE)WW.1943-5460.0000225.
  • Synolakis, C. E. 1987. “The Runup of Solitary Waves.” Journal of Fluid Mechanics 185: 523–545. doi:10.1017/S002211208700329X.
  • Synolakis, C. E., E. N. Bernard, V. V. Titov, U. Kaˆnoglu, and F. I. Gonzalez. 2007. “Standards, Criteria and Procedures for NOAA Evaluation of Tsunami Numerical Models.” NOAA Technical Memorandum OAR PMEL 135: 55.
  • Tadepalli, S., and C. E. Synolakis. 1994. “The Run-Up of N-Waves on Sloping Beaches.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 445: 99–112. doi:10.1098/rspa.1994.0050.
  • Taylor, K. E. 2001. “Summarizing Multiple Aspects of Model Performance in a Single Diagram.” Journal of Geophysical Research: Atmospheres 106: 7183–7192. doi:10.1029/2000JD900719.
  • Violeau, D. 2012. Fluid Mechanics and the SPH Method: Theory and Applications. Oxford: Oxford University Press.
  • Wei, Z., R. A. Dalrymple, E. Rustico, A. Hérault, and G. Bilotta. 2015. “Simulation of Nearshore Tsunami Breaking by Smoothed Particle Hydrodynamics Method.” Journal of Waterway, Port, Coastal, and Ocean Engineering 142 (4). July 2016.
  • Wendland, H. 1995. “Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree.” Advances in Computational Mathematics 4: 389–396. doi:10.1007/BF02123482.
  • Wu, W., and H. Liu. 2015. Runup of Double Solitary Waves on a Vertical Wall. USA: International Society of Offshore and Polar Engineers.
  • Yeh, H., P. L.-F. Liu, M. Briggs, and C. E. Synolakis. 1994. “Propagation and Amplification of Tsunamis at Coastal Boundaries.” Nature 372: 353–355. doi:10.1038/372353a0.
  • Zhang, F., A. J. C. Crespo, C. Altomare, J. M. Domínguez, A. Marzeddu, S. Shang, and M. Gómez-Gesteira. 2018. “DualSPHysics: A Numerical Tool to Simulate Real Breakwaters.” Journal of Hydrodynamics 30 (1): 95–105. doi:10.1007/s42241-018-0010-0.
  • Zijlema, M., G. S. Stelling, and P. Smit. 2011. “SWASH: An Operational Public Domain Code for Simulating Wave Fields and Rapidly Varied Flows in Coastal Waters.” Coastal Engineering 58: 992–1012. doi:10.1016/j.coastaleng.2011.05.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.