138
Views
0
CrossRef citations to date
0
Altmetric
Research article

Probabilistic tsunami hazard assessment for the makran subduction zone using logic tree and stochastic rupture sources

ORCID Icon &
Pages 332-360 | Received 27 Sep 2023, Accepted 24 Feb 2024, Published online: 13 Mar 2024

References

  • Ambraseys, N. N., and C. P. Melville. 2005. A History of Persian Earthquakes. Cambridge, UK: Cambridge university press.
  • Annaka, T., K. Satake, T. Sakakiyama, K. Yanagisawa, and N. Shuto. 2007. “Logic-Tree Approach for Probabilistic Tsunami Hazard Analysis and Its Applications to the Japanese Coasts.” Tsunami and Its Hazards in the Indian and Pacific Oceans 164 (1): 577–592. https://doi.org/10.1007/s00024-006-0174-3
  • Bilham, R., S. Lodi, S. Hough, S. Bukhary, A. M. Khan, and S. F. A. Rafeeqi. 2007. “Seismic hazard in Karachi, Pakistan: uncertain past, uncertain future.” Seismological Research Letters 78 (6): 601–613.
  • Bird, P. 2003. “An Updated Digital Model of Plate Boundaries.” Geochemistry, Geophysics, Geosystems 4 (3). https://doi.org/10.1029/2001GC000252.
  • Bondár, I., and D. Storchak. 2011. “Improved Location Procedures at the International Seismological Centre.” Geophysical Journal International 186 (3): 1220–1244. https://doi.org/10.1111/j.1365-246X.2011.05107.x.
  • Box, G. E. P., and D. R. Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical Society: Series B (Methodological) 26 (2): 211–243.
  • Byrne, D. E., L. R. Sykes, and D. M. Davis. 1992. “Great Thrust Earthquakes and Aseismic Slip Along the Plate Boundary of the Makran Subduction Zone.” Journal of Geophysical Research: Solid Earth 97 (B1): 449–478. https://doi.org/10.1029/91JB02165.
  • Coppersmith, K. J., and R. R. Youngs. 1986. “Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments.” Proceedings of the Third US national conference on earthquake engineering, Charleston, South Carolina 1: 301–312.
  • Cornell, C. A. 1968. “Engineering seismic risk analysis.” Bulletin of the Seismological Society of America 58 (5): 1583–1606. https://doi.org/10.1785/BSSA0580051583.
  • Cosentino, P., V. Ficarra, and D. Luzio. 1977. “Truncated Exponential Frequency-Magnitude Relationship in Earthquake Statistics.” Bulletin of the Seismological Society of America 67 (6): 1615–1623.
  • Danciu, L., K. Şeşetyan, M. Demircioglu, L. Gülen, M. Zare, R. Basili, A. Elias, et al. 2018. “The 2014 Earthquake Model of the Middle East: Seismogenic Sources.” Bulletin of Earthquake Engineering 16 (8): 3465–3496. https://doi.org/10.1007/s10518-017-0096-8.
  • Davies, G., J. Griffin, F. Løvholt, S. Glimsdal, C. Harbitz, H. K. Thio, S. Lorito, et al. 2018. “A global probabilistic tsunami hazard assessment from earthquake sources.” Geological Society, London, Special Publications 456 (1): 219–244. https://doi.org/10.1144/SP456.5.
  • Dawson, A. G., and I. Stewart. 2007. “Tsunami deposits in the geological record.” Sedimentary Geology 200 (3–4): 166–183. https://doi.org/10.1016/j.sedgeo.2007.01.002.
  • De Risi, R., and K. Goda. 2016. “Probabilistic Earthquake–Tsunami Multi-Hazard Analysis: Application to the Tohoku Region, Japan.” Frontiers in Built Environment 2:25. https://doi.org/10.3389/fbuil.2016.00025.
  • Di Giacomo, D., and D. A. Storchak. 2016. “A Scheme to Set Preferred Magnitudes in the ISC Bulletin.” Journal of Seismology 20 (2): 555–567. https://doi.org/10.1007/s10950-015-9543-7.
  • Dominey-Howes, D., P. Cummins, and D. Burbidge. 2007. “Historic Records of Teletsunami in the Indian Ocean and Insights from Numerical Modelling.” Natural Hazards 42 (1): 1–17. https://doi.org/10.1007/s11069-006-9042-9.
  • El-Hussain, I., R. Omira, Z. Al-Habsi, M. A. Baptista, A. Deif, and A. M. E. Mohamed. 2018. “Probabilistic and Deterministic Estimates of Near-Field Tsunami Hazards in Northeast Oman.” Geoscience Letters 5 (1): 1–13. https://doi.org/10.1186/s40562-018-0129-4.
  • El-Hussain, I., R. Omira, A. Deif, Z. Al-Habsi, G. Al-Rawas, A. Mohamad, K. Al-Jabri, and M. A. Baptista. 2016. “Probabilistic Tsunami Hazard Assessment Along Oman Coast from Submarine Earthquakes in the Makran Subduction Zone.” Arabian Journal of Geosciences 9 (15): 1–14. https://doi.org/10.1007/s12517-016-2687-0.
  • Fraser, S., A. Raby, A. Pomonis, K. Goda, S. C. Chian, J. Macabuag, M. Offord, K. Saito, and P. Sammonds. 2013. “Tsunami Damage to Coastal Defences and Buildings in the March 11th 2011 Mw 9.0 Great East Japan Earthquake and Tsunami.” Bulletin of Earthquake Engineering 11 (1): 205–239. https://doi.org/10.1007/s10518-012-9348-9.
  • Frohling, E., and W. Szeliga. 2016. “GPS Constraints on Interplate Locking within the Makran Subduction Zone.” Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 205 (1): 67–76. https://doi.org/10.1093/gji/ggw001.
  • Fruehn, J., R. S. White, and T. A. Minshull. 1997. “Internal Deformation and Compaction of the Makran Accretionary Wedge.” Terra nova 9 (3): 101–104. https://doi.org/10.1046/j.1365-3121.1997.d01-13.x.
  • Fukutani, Y., A. Suppasri, and F. Imamura. 2015. “Stochastic Analysis and Uncertainty Assessment of Tsunami Wave Height Using a Random Source Parameter Model That Targets a Tohoku-Type Earthquake Fault.” Stochastic Environmental Research and Risk Assessment 29 (7): 1763–1779. https://doi.org/10.1007/s00477-014-0966-4.
  • GEBCO. 2021. The GEBCO_2021 Grid: A Continuous Terrain Model of the Global Oceans and Land. Liverpool, UK: NERC EDS British Oceanographic Data Centre NOC.
  • Goda, K., and J. Song. 2016. “Uncertainty Modeling and Visualization for Tsunami Hazard and Risk Mapping: A Case Study for the 2011 Tohoku Earthquake.” Stochastic Environmental Research and Risk Assessment 30 (1): 2271–2285. https://doi.org/10.1007/s00477-015-1146-x.
  • Goda, K., T. Yasuda, N. Mori, and T. Maruyama. 2016. “New Scaling Relationships of Earthquake Source Parameters for Stochastic Tsunami Simulation.” Coastal Engineering Journal 58 (3): 1650010–1650011. https://doi.org/10.1142/S0578563416500108.
  • González, J., G. González, R. Aránguiz, D. Melgar, N. Zamora, M. N. Shrivastava, R. Das, P. A. Catalán, and R. Cienfuegos. 2020. “A Hybrid Deterministic and Stochastic Approach for Tsunami Hazard Assessment in Iquique, Chile.” Natural Hazards 100 (1): 231–254. https://doi.org/10.1007/s11069-019-03809-8.
  • Goto, C., Y. Ogawa, N. Shuto, and F. Imamura. 1997. IUGG/IOC TIME Project Intergovernmental Oceanographic Commission of UNESCO, Manuals and Guides 35:130.
  • Grando, G., and K. McClay. 2007. “Morphotectonics Domains and Structural Styles in the Makran Accretionary Prism, Offshore Iran.” Sedimentary Geology 196 (1–4): 157–179. https://doi.org/10.1016/j.sedgeo.2006.05.030.
  • Gudmundsson, Ó., and M. Sambridge. 1998. “A regionalized upper mantle (RUM) seismic model.” Journal of Geophysical Research: Solid Earth 103 (B4): 7121–7136. https://doi.org/10.1029/97JB02488.
  • Gutenberg, B., and C. F. Richter. 1956. “Magnitude and Energy of Earthquakes.” Annals of Geophysics 9 (1): 1–15.
  • Gutscher, M. A., and G. K. Westbrook. 2009. Great Earthquakes in Slow-Subduction, Low-Taper Margins.” In Subduction Zone Geodynamics, edited by S. Lallemand, and F. Funiciello. Frontiers in Earth Sciences, 119–133. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-87974-9_7.
  • Hayes, G. P., G. L. Moore, D. E. Portner, M. Hearne, H. Flamme, M. Furtney, and G. M. Smoczyk. 2018. “Slab2, a comprehensive subduction zone geometry model.” Science 362 (6410): 58–61.
  • Hayes, G. P., D. J. Wald, and R. L. Johnson. 2012. “Slab1.0: A three‐dimensional model of global subduction zone geometries.” Journal of Geophysical Research: Solid Earth 117 (B1). https://doi.org/10.1029/2011JB008524.
  • Heidarzadeh, M., T. Harada, K. Satake, T. Ishibe, and T. Takagawa. 2017. “Tsunamis from Strike-Slip Earthquakes in the Wharton Basin, Northeast Indian Ocean: March 2016 M W7. 8 Event and Its Relationship with the April 2012 M W 8.6 Event.” Geophysical Journal International 211 (3): 1601–1612. https://doi.org/10.1093/gji/ggx395.
  • Heidarzadeh, M., and A. Kijko. 2011. “A Probabilistic Tsunami Hazard Assessment for the Makran Subduction Zone at the Northwestern Indian Ocean.” Natural Hazards 56 (3): 577–593. https://doi.org/10.1007/s11069-010-9574-x.
  • Heidarzadeh, M., M. D. Pirooz, and N. H. Zaker. 2009. “Modeling the Near-Field Effects of the Worst-Case Tsunami in the Makran Subduction Zone.” Ocean Engineering 36 (5): 368–376. https://doi.org/10.1016/j.oceaneng.2009.01.004.
  • Heidarzadeh, M., M. D. Pirooz, N. H. Zaker, and A. C. Yalciner. 2009. “Preliminary Estimation of the Tsunami Hazards Associated with the Makran Subduction Zone at the Northwestern Indian Ocean”.” Natural Hazards 48 (2): 229–243. https://doi.org/10.1007/s11069-008-9259-x.
  • Heidarzadeh, M., M. D. Pirooz, N. H. Zaker, A. C. Yalciner, M. Mokhtari, and A. Esmaeily. 2008. “Historical Tsunami in the Makran Subduction Zone off the Southern Coasts of Iran and Pakistan and Results of Numerical Modeling.” Ocean Engineering 35 (8–9): 774–786.
  • Heidarzadeh, M., and K. Satake. 2014. “Possible Sources of the Tsunami Observed in the Northwestern Indian Ocean Following the 2013 September 24 Mw 7.7 Pakistan Inland Earthquake.” Geophysical Journal International 199 (2): 752–766. https://doi.org/10.1093/gji/ggu297.
  • Heidarzadeh, M., and K. Satake. 2015. “New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data.” Pure and Applied Geophysics 172 (3–4): 621–640. https://doi.org/10.1007/s00024-014-0948-y.
  • Heidarzadeh, M., and K. Satake. 2017. “A Combined Earthquake–Landslide Source Model for the Tsunami from the 27 November 1945 M W 8.1 Makran Earthquake.” Bulletin of the Seismological Society of America 107 (2): 1033–1040. https://doi.org/10.1785/0120160196.
  • Hoechner, A., A. Y. Babeyko, and N. Zamora. 2016. “Probabilistic Tsunami Hazard Assessment for the Makran Region with Focus on Maximum Magnitude Assumption.” Natural Hazards and Earth System Sciences 16 (6): 1339–1350. https://doi.org/10.5194/nhess-16-1339-2016.
  • Hoffmann, G. 2016. Defining the Worst Case Scenario for the Makran Subduction Zone: The 1008 AD Tsunami. Vienna, Austria: Universitätsbibliothek der RWTH Aachen.
  • Hoffmann, G., K. Reicherter, T. Wiatr, C. Grützner, and T. Rausch. 2013. “Block and Boulder Accumulations Along the Coastline Between Fins and Sur (Sultanate of Oman): Tsunamigenic Remains?” Natural Hazards 65 (1): 851–873. https://doi.org/10.1007/s11069-012-0399-7.
  • Hoffmann, G., M. Rupprechter, N. Al Balushi, C. Grützner, and K. Reicherter. 2013. “The Impact of the 1945 Makran Tsunami Along the Coastlines of the Arabian Sea (Northern Indian Ocean)–A Review.” Zeitschrift für Geomorphologie, Supplementary Issues 57 (4): 257–277. https://doi.org/10.1127/0372-8854/2013/S-00134.
  • Horspool, N., I. Pranantyo, J. Griffin, H. Latief, D. H. Natawidjaja, W. Kongko, A. Cipta, B. Bustaman, S. D. Anugrah, and H. K. Thio. 2014. “A probabilistic tsunami hazard assessment for Indonesia.” Natural Hazards and Earth System Sciences (NHESS) 14 (11): 3105–3122. https://doi.org/10.5194/nhess-14-3105-2014.
  • Jaiswal, R. K., B. K. Rastogi, and A. P. Singh. 2008. “Past Tsunamis in the Arabian Sea and Future Possibilities.” Indian Minerals (Special Volume-Recent Trends and Advancements in Geophysics) 61 (62): 3–4.
  • Jaiswal, R. K., A. P. Singh, and B. K. Rastogi. 2009. “Simulation of the Arabian Sea Tsunami Propagation Generated Due to 1945 Makran Earthquake and Its Effect on Western Parts of Gujarat (India).” Natural Hazards 48 (2): 245–258. https://doi.org/10.1007/s11069-008-9261-3.
  • Jordan, B. R. 2008. “Tsunamis of the Arabian Peninsula a Guide of Historic Events.” Science of Tsunami Hazards 27 (1): 31.
  • Kajitani, Y., S. E. Chang, and H. Tatano. 2013. “Economic Impacts of the 2011 Tohoku-Oki Earthquake and Tsunami.” Earthquake Spectra 29 (1): 457–478. https://doi.org/10.1193/1.4000108.
  • Khan, M. J., M. Ali, M. Xu, and M. Khan. 2020. “Seismicity Analysis of Selected Faults in Makran Southern Pakistan.” Acta Geophysica 68 (4): 965–978. https://doi.org/10.1007/s11600-020-00447-8.
  • Kopp, C., J. Fruehn, E. R. Flueh, C. Reichert, N. Kukowski, J. Bialas, and D. Klaeschen. 2000. “Structure of the Makran Subduction Zone from Wide-Angle and Reflection Seismic Data.” Tectonophysics 329 (1–4): 171–191. https://doi.org/10.1016/S0040-1951(00)00195-5.
  • Kukowski, N., T. Schillhorn, E. R. Flueh, and K. Huhn. 2000. “Newly Identified Strike-Slip Plate Boundary in the Northeastern Arabian Sea.” Geology 28 (4): 355–358. https://doi.org/10.1130/0091-7613(2000)28<355:NISPBI>2.0.CO;2.
  • Lawrence, R. D., S. Hasan Khan, and T. Nakata. 1992. “Chaman Fault, Pakistan-Afghanistan.” Final meeting of IGCP Project 206 A worldwide comparison of the characteristics of major active faults, Mammoth Lakes, CA, 1989, 196–223.
  • Levin, B. W., and M. Nosov. 2009. Physics of Tsunamis. Vol. 327. Dordrecht: Springer.
  • Lorito, S., J. Selva, R. Basili, F. Romano, M. M. Tiberti, and A. Piatanesi. 2015. “Probabilistic Hazard for Seismically Induced Tsunamis: Accuracy and Feasibility of Inundation Maps.” Geophysical Journal International 2001:574–588. https://doi.org/10.1093/gji/ggu408.
  • Mahmood, N., K. Khan, Z. Rafi, and F. Lovholt. And 2012. “Mapping of Tsunami Hazard Along Makran Coast of Pakistan.” Accessed November 15, 2022. http://www.pmd.gov.pk/seismic/2.pdf.
  • Mai, P. M., and G. C. Beroza. 2002. “A Spatial Random Field Model to Characterize Complexity in Earthquake Slip.” Journal of Geophysical Research: Solid Earth 107 (B11): ESE–10. https://doi.org/10.1029/2001JB000588.
  • Mai, P. M., and K. K. S. Thingbaijam. 2014. “SRCMOD: An Online Database of Finite‐Fault Rupture Models.” Seismological Research Letters 85 (6): 1348–1357. https://doi.org/10.1785/0220140077.
  • McCaffrey, R. 2009. “The Tectonic Framework of the Sumatran Subduction Zone.” Annual Review of Earth and Planetary Sciences 37 (1): 345–366. https://doi.org/10.1146/annurev.earth.031208.100212.
  • McGuire, R. K. 2008. “Probabilistic Seismic Hazard Analysis: Early History.” Earthquake Engineering & Structural Dynamics 37 (3): 329–338. https://doi.org/10.1002/eqe.765.
  • Mignan, A., and J. Woessner. 2012. “Theme IV—Understanding Seismicity Catalogs and Their Problems”. Community online resource for statistical seismicity analysis.
  • Miyashita, T., N. Mori, and K. Goda. 2020. “Uncertainty of Probabilistic Tsunami Hazard Assessment of Zihuatanejo (Mexico) Due to the Representation of Tsunami Variability.” Coastal Engineering Journal 62 (3): 413–428. https://doi.org/10.1080/21664250.2020.1780676.
  • Mokhtari, M. 2015. “The Role of Splay Faulting in Increasing the Devastation Effect of Tsunami Hazard in Makran, Oman Sea.” Arabian Journal of Geosciences 8 (7): 4291–4298. https://doi.org/10.1007/s12517-014-1375-1.
  • Mokhtari, M., A. Ala Amjadi, L. Mahshadnia, and M. Rafizadeh. 2019. “A Review of the Seismotectonics of the Makran Subduction Zone as a Baseline for Tsunami Hazard Assessments.” Geoscience Letters 6 (1): 1–9. https://doi.org/10.1186/s40562-019-0143-1.
  • Mokhtari, M., I. A. Fard, and K. Hessami. 2008. “Structural Elements of the Makran Region, Oman Sea and Their Potential Relevance to Tsunamigenisis.” Natural Hazards 47 (2): 185–199. https://doi.org/10.1007/s11069-007-9208-0.
  • Momeni, P., K. Goda, M. Heidarzadeh, and J. Qin. 2020. “Stochastic Analysis of Tsunami Hazard of the 1945 Makran Subduction Zone Mw 8.1–8.3 Earthquakes.” Geosciences 10 (11): 452. https://doi.org/10.3390/geosciences10110452.
  • Momeni, P., K. Goda, M. Mokhtari, and M. Heidarzadeh. 2022. “A New Tsunami Hazard Assessment for Eastern Makran Subduction Zone by Considering Splay Faults and Applying Stochastic Modeling.” Coastal Engineering Journal 65 (1): 1–30. https://doi.org/10.1080/21664250.2022.2117585.
  • Mori, N., K. Goda, and D. Cox. 2018. “Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes.” The 2011 Japan Earthquake and Tsunami: Reconstruction and Restoration: Insights and Assessment After 5 Years 47 (1): 469–485. https://doi.org/10.1007/978-3-319-58691-5_27.
  • Mori, N., A. Muhammad, K. Goda, T. Yasuda, and A. Ruiz-Angulo. 2017. “Probabilistic Tsunami Hazard Analysis of the Pacific Coast of Mexico: Case Study Based on the 1995 Colima Earthquake Tsunami.” Frontiers in Built Environment 3:34. https://doi.org/10.3389/fbuil.2017.00034.
  • Müller, R. D., W. R. Roest, J. Y. Royer, L. M. Gahagan, and J. G. Sclater. 1997. “Digital isochrons of the world’s ocean floor.” Journal of Geophysical Research: Solid Earth 102 (B2): 3211–3214. https://doi.org/10.1029/96JB01781.
  • Murata, S., F. Imamura, K. Katoh, Y. Kawata, S. Takahashi, and T. Takayama. 2010. Tsunami: To Survive from Tsunami. New Jersey: World Scientific Publishing.
  • Murotani, S., K. Satake, and Y. Fujii. 2013. “Scaling Relations of Seismic Moment, Rupture Area, Average Slip, and Asperity Size for M~ 9 Subduction‐Zone Earthquakes.” Geophysical Research Letters 40 (19): 5070–5074. https://doi.org/10.1002/grl.50976.
  • Murty, T. S., A. Bapat, and V. Prasad. 1999. “Tsunamis on the Coastlines of India.” Science of Tsunami Hazards 17 (3): 167–172.
  • Murty, T. S., and M. Rafiq. 1991. “A Tentative List of Tsunamis in the Marginal Seas of the North Indian Ocean.” Natural Hazards 4 (1): 81–83. https://doi.org/10.1007/BF00126560.
  • Musson, R. M. W. 2009. “Subduction in the Western Makran: The historian’s Contribution.” Journal of the Geological Society 166 (3): 387–391.
  • Neetu, S., I. Suresh, R. Shankar, B. Nagarajan, R. Sharma, S. S. C. Shenoi, A. S. Unnikrishnan, and D. Sundar. 2011. “Trapped Waves of the 27 November 1945 Makran Tsunami: Observations and Numerical Modeling.” Natural Hazards 59 (3): 1609–1618. https://doi.org/10.1007/s11069-011-9854-0.
  • Okada, Y. 1985. “Surface Deformation Due to Shear and Tensile Faults in a Half-Space.” Bulletin of the Seismological Society of America 75 (4): 1135–1154. https://doi.org/10.1785/BSSA0750041135.
  • Okal, E. A., H. M. Fritz, P. E. Raad, C. E. Synolakis, Y. Al-Shijbi, and M. Al-Saifi. 2006. “Oman Field Survey After the December 2004 Indian Ocean Tsunami.” Earthquake Spectra 22 (3): 203–218.
  • Okal, E. A., and C. E. Synolakis. 2008. “Far-Field Tsunami Hazard from Mega-Thrust Earthquakes in the Indian Ocean.” Geophysical Journal International 172 (3): 995–1015. https://doi.org/10.1111/j.1365-246X.2007.03674.x.
  • Page, W. D., J. N. Alt, L. S. Cluff, and G. Plafker. 1979. “Evidence for the Recurrence of Large-Magnitude Earthquakes Along the Makran Coast of Iran and Pakistan.” Tectonophysics 52 (1–4): 533–547.
  • Pajang, S., N. Cubas, J. Letouzey, L. L. Pourhiet, S. Seyedali, M. Fournier, P. Agard, M. M. Khatib, M. Heyhat, and M. Mokhtari. 2021. “Seismic Hazard of the Western Makran Subduction Zone: Insight from Mechanical Modelling and Inferred Frictional Properties.” Earth and Planetary Science Letters 562:116789. https://doi.org/10.1016/j.epsl.2021.116789.
  • Pararas-Carayannis, G. 2006. “The Potential of Tsunami Generation Along the Makran Subduction Zone in the Northern Arabian Sea: Case Study: The Earthquake and Tsunami of November 28, 1945.” Science of Tsunami Hazards 24 (5): 358–384.
  • Park, H., D. T. Cox, M. S. Alam, and A. R. Barbosa. 2017. “Probabilistic Seismic and Tsunami Hazard Analysis Conditioned on a Megathrust Rupture of the Cascadia Subduction Zone.” Frontiers in Built Environment 3:32. https://doi.org/10.3389/fbuil.2017.00032.
  • Park, H., D. T. Cox, and A. R. Barbosa. 2017. “Comparison of Inundation Depth and Momentum Flux Based Fragilities for Probabilistic Tsunami Damage Assessment and Uncertainty Analysis.” Coastal Engineering 122:10–26. https://doi.org/10.1016/j.coastaleng.2017.01.008.
  • Penney, C., F. Tavakoli, A. Saadat, H. R. Nankali, M. Sedighi, F. Khorrami, F. Sobouti, Z. Rafi, A. Copley, and J. Jackson. 2017. “Megathrust and Accretionary Wedge Properties and Behaviour in the Makran Subduction Zone.” Geophysical Journal International 209 (3): 1800–1830. https://doi.org/10.1093/gji/ggx126.
  • Pranantyo, I. R., M. Heidarzadeh, and P. R. Cummins. 2021. “Complex Tsunami Hazards in Eastern Indonesia from Seismic and Non-Seismic Sources: Deterministic Modelling Based on Historical and Modern Data.” Geoscience Letters 8 (1): 20. https://doi.org/10.1186/s40562-021-00190-y.
  • Prizomwala, S. P., D. Gandhi, N. Bhatt, W. Winkle, M. R. Kumar, N. Makwana, and N. Bhatt. 2018. “Geological Evidence for AD 1008 Tsunami Along the Kachchh Coast, Western India: Implications for Hazard Along the Makran Subduction Zone.” Scientific Reports 8 (1): 16816. https://doi.org/10.1038/s41598-018-35193-x.
  • Quittmeyer, R. C., and K. H. Jacob. 1979. “Historical and Modern Seismicity of Pakistan, Afghanistan, Northwestern India, and Southeastern Iran.” Bulletin of the Seismological Society of America 69 (3): 773–823.
  • Raby, A., J. Macabuag, A. Pomonis, S. Wilkinson, and T. Rossetto. 2015. “Implications of the 2011 Great East Japan Tsunami on Sea Defence Design.” International Journal of Disaster Risk Reduction 14:332–346. https://doi.org/10.1016/j.ijdrr.2015.08.009.
  • Rajendran, C. P., T. E. Singh, M. A. Mukul, M. A. Thakkar, G. C. Kothyari, B. John, and K. Rajendran. 2020. “Paleoseismological studies in India (2016-2020): status and prospects.” Proceedings of the Indian National Science Academy 86 (1): 585–607.
  • Rashidi, A., Z. H. Shomali, D. Dutykh, and N. K. Farajkhah. 2020. “Tsunami Hazard Assessment in the Makran Subduction Zone.” Natural Hazards 100 (2): 861–875. https://doi.org/10.1007/s11069-019-03848-1.
  • Rastogi, B. K., and R. K. Jaiswal. 2006. “A Catalog of Tsunamis in the Indian Ocean.”
  • Regard, V., O. Bellier, J. C. Thomas, D. Bourlès, S. Bonnet, M. R. Abbassi, R. Braucher, et al. 2005. “Cumulative Right-Lateral Fault Slip Rate Across the Zagros-Makran Transfer Zone: Role of the Minab-Zendan Fault System in Accommodating Arabia-Eurasia Convergence in Southeast Iran.” Geophysical Journal International 162 (1): 177–203. https://doi.org/10.1111/j.1365-246X.2005.02558.x.
  • Regard, V., D. Hatzfeld, M. Molinaro, C. Aubourg, R. Bayer, O. Bellier, F. Yamini-Fard, M. Peyret, and M. Abbassi. 2010. “The Transition Between Makran Subduction and the Zagros Collision: Recent Advances in Its Structure and Active Deformation.” Geological Society, London, Special Publications 330 (1): 43–64. https://doi.org/10.1144/SP330.4.
  • Rydelek, P. A., and I. S. Sacks. 2003. “Comment on “Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan.” by Stefan Wiemer and Max Wyss.” Bulletin of the Seismological Society of America 93 (4): 1862–1867.
  • Salah, P., J. Sasaki, and M. Soltanpour. 2021. “Comprehensive probabilistic tsunami hazard assessment in the Makran subduction zone.” Pure and Applied Geophysics 178 (12): 5085–5107. https://doi.org/10.1007/s00024-021-02725-y.
  • Sanderson, D., S. Kameshwar, N. Rosenheim, and D. Cox. 2021. “Deaggregation of Multi-Hazard Damages, Losses, Risks, and Connectivity: An Application to the Joint Seismic-Tsunami Hazard at Seaside, Oregon.” Natural Hazards 109 (2): 1821–1847. https://doi.org/10.1007/s11069-021-04900-9.
  • Schlüter, H. U., A. Prexl, C. Gaedicke, H. Roeser, C. Reichert, H. Meyer, and C. Von Daniels. 2002. “The Makran Accretionary Wedge: Sediment Thicknesses and Ages and the Origin of Mud Volcanoes.” Marine Geology 185 (3–4): 219–232. https://doi.org/10.1016/S0025-3227(02)00192-5.
  • Schorlemmer, D., S. Wiemer, and M. Wyss. 2005. “Variations in earthquake-size distribution across different stress regimes.” Nature 437 (7058): 539–542. https://doi.org/10.1038/nature04094.
  • Schwartz, D. P., and K. J. Coppersmith. 1984. “Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones.” Journal of Geophysical Research: Solid Earth 89 (B7): 5681–5698.
  • Scordilis, E. M. 2006. “Empirical global relations converting MS and mb to moment magnitude.” Journal of Seismology 10 (2): 225–236. https://doi.org/10.1007/s10950-006-9012-4.
  • Shah-Hosseini, M., C. Morhange, A. N. Beni, N. Marriner, H. Lahijani, M. Hamzeh, and F. Sabatier. 2011. “Coastal Boulders as Evidence for High-Energy Waves on the Iranian Coast of Makran.” Marine Geology 290 (1–4): 17–28. https://doi.org/10.1016/j.margeo.2011.10.003.
  • Smit, J., J. P. Burg, A. Dolati, and D. Sokoutis. 2010. “Effects of Mass Waste Events on Thrust Wedges: Analogue Experiments and Application to the Makran Accretionary Wedge.” Tectonics 29 (3): 3. https://doi.org/10.1029/2009TC002526.
  • Smith, G. L. 2013. “The Structure, Fluid Distribution and Earthquake Potential of the Makran Subduction Zone, Pakistan.” PhD Thesis, University of Southampton.
  • Smith, G. L., L. McNeill, T. J. Henstock, and J. Bull. 2012. “The Structure and Fault Activity of the Makran Accretionary Prism.” Journal of Geophysical Research: Solid Earth 117 (B7). https://doi.org/10.1029/2012JB009312.
  • Storchak, D. A., J. Harris, L. Brown, K. Lieser, B. Shumba, and D. Di Giacomo. 2020. “Rebuild of the Bulletin of the International Seismological Centre (ISC)—Part 2: 1980–2010.” Geoscience Letters 7 (1): 1–21. https://doi.org/10.1186/s40562-020-00164-6.
  • Storchak, D. A., J. Harris, L. Brown, K. Lieser, B. Shumba, R. Verney, D. Di Giacomo, and E. Korger. 2017. “Rebuild of the Bulletin of the International Seismological Centre (ISC), Part 1: 1964–1979.” Geoscience Letters 4 (1): 1–14. https://doi.org/10.1186/s40562-017-0098-z.
  • Suppasri, A., N. Shuto, F. Imamura, S. Koshimura, E. Mas, and A. C. Yalciner. 2013. “Lessons Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan.” Pure and Applied Geophysics 170 (6–8): 993–1018. https://doi.org/10.1007/s00024-012-0511-7.
  • Syracuse, E. M., and G. A. Abers. 2006. “Global Compilation of Variations in Slab Depth Beneath Arc Volcanoes and Implications.” Geochemistry, Geophysics, Geosystems 7 (5). https://doi.org/10.1029/2005GC001045.
  • Tanioka, Y., and K. Satake. 1996. “Tsunami Generation by Horizontal Displacement of Ocean Bottom.” Geophysical Research Letters 23 (8): 861–864. https://doi.org/10.1029/96GL00736.
  • Taylor, D. W. A., J. A. Snoke, I. S. Sacks, and T. Takanami. 1990. “Nonlinear Frequency-Magnitude Relationships for the Hokkaido Corner, Japan.” Bulletin of the Seismological Society of America 80 (2): 340–353.
  • Tsuji, Y., K. Satake, T. Ishibe, S. Kusumoto, T. Harada, A. Nishiyama, and M. Heidarzadeh. 2011. “Field Surveys of Tsunami Heights from the 2011 off the Pacific Coast of Tohoku, Japan Earthquake.” Bulletin of Earthquake Research Institute 86 (1): 29–279.
  • USGS. 2015. Shuttle Radar Topography Mission (SRTM) 1 Arc‐Second Global. Reston, VA: US Geological Survey.
  • Vernant, P., F. Nilforoushan, D. Hatzfeld, M. Abbassi, C. Vigny, F. Masson, H. Nankali, et al. 2004. “Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman.” Geophysical Journal International 157 (1): 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x.
  • Weichert, D. H. 1980. “Estimation of the Earthquake Recurrence Parameters for Unequal Observation Periods for Different Magnitudes.” Bulletin of the Seismological Society of America 70 (4): 1337–1346.
  • Wiemer, S., and M. Wyss. 2000. “Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan.” Bulletin of the Seismological Society of America 90 (4): 859–869.
  • Woessner, J., and R. J. Farahani. 2020. “Tsunami Inundation Hazard across Japan.” International Journal of Disaster Risk Reduction 49:101654. https://doi.org/10.1016/j.ijdrr.2020.101654.
  • Woessner, J., and S. Wiemer. 2005. “Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty.” Bulletin of the Seismological Society of America 95 (2): 684–698.
  • Zafarani, H., L. Etemadsaeed, M. Rahimi, N. Kheirdast, A. Rashidi, A. Ansari, M. Mokhtari, and M. Eskandari-Ghadi. 2022. “Probabilistic Tsunami Hazard Analysis for Western Makran Coasts, South-East Iran.” Natural Hazards 115 (2): 1275–1311. https://doi.org/10.1007/s11069-022-05595-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.