2,201
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Exozodiacal clouds: hot and warm dust around main sequence stars

, , , , , , , , & show all

References

  • Krivov AV. Debris disks: seeing dust, thinking of planetesimals and planets. Res Astron Astrophys. 2010;10:383–414. DOI:10.1088/1674-4527/10/5/001
  • Wyatt MC. Evolution of debris disks. Ann Rev Astron Astrophys. 2008;46:339–383. DOI:10.1146/annurev.astro.45.051806.110525
  • Kennedy GM, Wyatt MC. The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. Mon Not R Astron Soc. 2013;433:2334–2356. DOI:10.1093/mnras/stt900
  • Absil O, di Folco E, Mérand A, et al. Circumstellar material in the Vega inner system revealed by CHARA/FLUOR. Astron Astrophys. 2006;452:237–244. DOI:10.1051/0004-6361:20054522
  • di Folco E, Absil O, Augereau JC. A near-infrared interferometric survey of debris disk stars. I. Probing the hot dust content around ε Eridani and τ Ceti with HARA/FLUOR. Astron Astrophys. 2007;475:243–250. DOI:10.1051/0004-6361:20077625
  • Ertel S, Absil O, Defrère D, et al. A near-infrared interferometric survey of debris-disk stars. IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER. Astron Astrophys. 2014;570:A128. DOI:10.1051/0004-6361/201424438
  • Kirchschlager F, Wolf S, Krivov AV, Mutschke H, Brunngräber R. Constraints on the structure of hot exozodiacal dust belts. Mon Not R Astron Soc. 2017;467:1614–1626. DOI:10.1093/mnras/stx202
  • Wyatt MC, Smith R, Greaves JS, et al. Transience of hot dust around sun-like stars. Astrophys J. 2007;658:569–583. DOI:10.1086/510999
  • Defrère D, Absil O, Augereau JC, et al. Hot exozodiacal dust resolved around Vega with IOTA/IONIC. Astron Astrophys. 2011;534:A5. DOI:10.1051/0004-6361/201117017
  • van Lieshout R, Min M, Dominik C. Dusty tails of evaporating exoplanets. I. Constraints on the dust composition. Astron Astrophys. 2014;572:A76. DOI:10.1051/0004-6361/201322090
  • Roberge A, Chen CH, Millan-Gabet R, et al. The exozodiacal dust problem for direct observations of exo-earths. Publ Astron Soc Pac. 2012;124:799. DOI:10.1086/667218
  • Stark CC, Roberge A, Mandell A, et al. Lower limits on aperture size for an ExoEarth detecting coronagraphic mission. Astrophys J. 2015;808:149. DOI:10.1088/0004-637X/808/2/149
  • Defrère D, Absil O, den Hartog R, et al. Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions. Astron Astrophys. 2010;509:A9. DOI:10.1051/0004-6361/200912973
  • Kral Q, Schneider J, Kennedy G, et al. Effects of disc asymmetries on astrometric measurements. Can they mimic planets? Astron Astrophys. 2016;592:A39. DOI:10.1051/0004-6361/201628298
  • Wyatt MC, Dermott SF, Grogan K, et al. A unique viewthrough the earth’s resonant ring. In: Bicay MD, Cutri RM, Madore BF, editors. Astrophysics with infrared surveys: a prelude to SIRTF, volume177 of Astronomical Society of the Pacific Conference Series; 1999. p. 374. ISBN: 1-58381-001-3.
  • Augereau JC, Nelson RP, Lagrange AM. Dynamical modeling of large scale asymmetries in the beta Pictoris dust disk. Astron Astrophys. 2001;370:447–455. DOI:10.1051/0004-6361:20010199
  • Dohnanyi JS. Part Dyn. 1978;527–605.
  • Grün E, Gustafson BAS, Dermott S, et al. Interplanetary dust. Berlin: Springer; 2001.
  • Schewenn R, Marsch E. Physics of the Inner Heliosphere I, XI. Berlin, Germany: Springer-Verlag; 1990. p. 207.
  • Mann I, Köhler M, Kimura H, et al. Dust in the solar system and in extra-solar planetary systems. Astron Astrophys Rev. 2006;13:159–228. DOI:10.1007/s00159-006-0028-0
  • Nesvorný D, Jenniskens P, Levison HF, et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks, Astrophys J. 2010;713:816–836. DOI:10.1088/0004-637X/713/2/816
  • Vitense C, Krivov AV, Kobayashi H, et al. An improved model of the Edgeworth-Kuiper debris disk. Astron Astrophys. 2012;540:A30. DOI:10.1051/0004-6361/201118551
  • Fixsen DJ, Dwek E. The zodiacal emission spectrum as determined by COBE and its implications. Astrophys J. 2002;578:1009–1014. DOI:10.1086/342658
  • Mann I, Czechowski A, Meyer-Vernet N, et al. Dust in the interplanetary medium. Plasma Phys Controlled Fusion. 2010;52:124012. DOI:10.1088/0741-3335/52/12/124012
  • Grun E, Zook HA, Fechtig H, et al. Collisional balance of the meteoritic complex. Icarus. 1985;62:244–272. DOI:10.1016/0019-1035(85)90121-6
  • Briggs RE. Symposium: astrometry I: the steady-state space distribution of meteoric particles under the operation of the Poynting-Robertson effect. Astron J. 1962;67:710. DOI:10.1086/108799
  • Gor’kavyi NN, Ozernoy LM, Mather JC, et al. Quasi-stationary states of dust flows under Poynting-Robertson drag: new analytical and numerical solutions. Astrophys J. 1997;488:268–276. DOI:10.1086/304702
  • Leinert C, Roser S, Buitrago J. How to maintain the spatial distribution of interplanetary dust. Astron Astrophys. 1983;118:345–357.
  • Dermott SF, Jayaraman S, Xu YL, et al. A circumsolar ring of asteroidal dust in resonant lock with the earth. Nature. 1994;369:719–723. DOI:10.1038/369719a0
  • Jones MH, Bewsher D, Brown DS. Imaging of a circumsolar dust ring near the orbit of Venus. Science. 2013;342:960–963. DOI:10.1126/science.1243194
  • Peterson AW. Experimental detection of thermal radiation from interplanetary dust. Astrophys J Lett. 1967;148:L37. DOI:10.1093/mnras/stt895
  • MacQueen RM. Infrared Observations of the Outer Solar Corona. Astrophys J. 1968;154:1059. DOI:10.1086/149825
  • Kimura H, Mann I, Mukai T. Influence of dust shape and material composition on the solar F-corona. Planet Space Sci. 1998;46:911–919. DOI:10.1016/S0032-0633(98)00044-0
  • Kobayashi H, Watanabe SI, Kimura H, et al. Dust ring formation due to ice sublimation of radially drifting dust particles under the Poynting Robertson effect in debris disks. Icarus. 2008;195:871–881. DOI:10.1016/j.icarus.2008.02.005
  • Krivov A, Kimura H, Mann I. Dynamics of dust near the sun. Icarus. 1998;134:311–327. DOI:10.1006/icar.1998.5949
  • Lamy P, Kuhn JR, Lin H, et al. No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse. Science. 1992;257:1377–1380. DOI:10.1126/science.257.5075.1377
  • Mann I. The solar F-corona - Calculations of the optical and infrared brightness of circumsolar dust. Astron Astrophys. 1992;261:329–335.
  • Mann I, Krivov A, Kimura H. Dust cloud near the sun. Icarus. 2000;146:568–582. DOI:10.1006/icar.2000.6419
  • Mukai T, Yamamoto T. A model of the circumsolar dust cloud. Publ Astron Soc Jpn. 1979;31:585–596.
  • Dikarev V, Grün E, Baggaley J, et al. Modeling the sporadic meteoroid background cloud. Earth Moon Planets. 2004;95:109–122. DOI:10.1007/s11038-005-9017-y
  • Divine N. Five populations of interplanetary meteoroids. J Geophys Res. 1993;98:17029–17048. DOI:10.1029/93JE01203
  • Kelsall T, Weiland JL, Franz BA, et al. The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. Astrophys J. 1998;508:44–73. DOI:10.1086/306380
  • McNamara H, Jones J, Kauffman B, et al. Meteoroid Engineering Model (MEM): a meteoroid model for the inner solar system. Earth Moon Planets. 2004;95:123–139. DOI:10.1007/s11038-005-9044-8
  • Staubach P, Grün E, Jehn R. The meteoroid environment near earth. Adv Space Res. 1997;19:301–308. DOI:10.1016/S0273-1177(97)00017-3
  • Love SG, Brownlee DE. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science. 1993;262:550.
  • Zook HA, Berg OE. A source for hyperbolic cosmic dust particles. Planet Space Sci. 1975;23:183–203. DOI:10.1016/0032-0633(75)90078-1
  • Wehry A, Mann I. Identification of beta -meteoroids from measurements of the dust detector onboard the ULYSSES spacecraft. Astron Astrophys. 1999;341:296–303.
  • Meyer-Vernet N, Maksimovic M, Czechowski A, et al. Dust Detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind? Sol Phys. 2009;256:463–474. DOI:10.1007/s11207-009-9349-2
  • Czechowski A, Mann I. Formation and acceleration of nano dust in the inner heliosphere. Astrophys J. 2010;714:89–99. DOI:10.1088/0004-637X/714/1/89
  • Brownlee DE. Interplanetary dust. Rev Geophys Space Phys. 1979;17:1735–1743. DOI:10.1029/RG017i007p01735
  • Jessberger EK, Stephan T, Rost D, et al. Properties of interplanetary dust: information from collected samples. Berlin: Springer; 2001. p. 253.
  • Joswiak DJ, Brownlee DE, Pepin RO, et al. Densities and mineralogy of cometary and asteroidal interplanetary dust particles collected in the stratosphere. Dust Planet Sys. 2007;643:141–144.
  • Brownlee D, et al. Comet 81P/Wild 2 under a microscope. Science. 2006;314:1711. DOI:10.1126/science.1135840
  • Nakamura E, Makishima A, Moriguti T, et al. Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft. Proc Nat Acad Sci. 2012;109:E624–E629. DOI:10.1073/pnas.1116236109
  • Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa Regolith. Science. 2011;333:1125. DOI:10.1126/science.1207807
  • Fulle M, Della Corte V, Rotundi A, et al. Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals. Mon Not R Astron Soc. 2016;462:S132–S137. DOI:10.1093/mnras/stw2299
  • Dermott SF, Nicholson PD, Burns JA, et al. Origin of the solar system dust bands discovered by IRAS. Nature. 1984;312:505–509. DOI:10.1038/312505a0
  • Dermott SF, Durda DD, Gustafson BAS, et al. The origin and evolution of the zodiacal dust cloud. In: Harris AW, Nicholson PD, editors. Asteroids, comets, meteors 1991. Lunar and Planetary Inst.; 1992. p. 153–156.
  • Sykes MV. IRAS observations of extended zodiacal structures. Astrophys J Lett. 1988;334:L55–L58. DOI:10.1086/185311
  • Ueda T, Kobayashi H, Takeuchi T, et al. Size dependence of dust distribution around the earth orbit. Astron J. 2017;153:232. DOI:10.3847/1538-3881/aa5ff3
  • Nesvorný D, Janches D, Vokrouhlický D, et al. Dynamical model for the zodiacal cloud and sporadic meteors. Astrophys J. 2011;743:129. DOI:10.1088/0004-637X/743/2/129
  • Reach WT, Sykes MV, Lien D, et al. The formation of Encke meteoroids and dust trail. Icarus. 2000;148:80–94. DOI:10.1006/icar.2000.6478
  • Sykes MV, Lebofsky LA, Hunten DM, et al. The discovery of dust trails in the orbits of periodic comets. Science. 1986;232:1115–1117. DOI:10.1126/science.232.4754.1115
  • Keller HU, Mottola S, Davidsson B, et al. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astron Astrophys. 2015;583:A34. DOI:10.1051/0004-6361/201525964
  • Flynn GJ. Interplanetary dust particles collected from the stratosphere: physical, chemical, and mineralogical properties and implications for their sources. Planet Space Sci. 1994;42:1151–1161. DOI:10.1016/0032-0633(94)90014-0
  • Marion L, Absil O, Ertel S, et al. A near-infrared interferometric survey of debris-disk stars. Astron Astrophys. 2017, submitted.
  • Ciardi DR, van Belle GT, Akeson RL, et al. On the near-infrared size of Vega. Astrophys J. 2001;559:1147–1154. DOI:10.1086/322345
  • Absil O, Mennesson B, Le Bouquin JB, et al. An interferometric study of the Fomalhaut inner debris disk. I. Near-infrared detection of hot dust with VLTI/VINCI. Astrophys J. 2009;704:150–160. DOI:10.1088/0004-637X/704/1/150
  • Absil O, Defrère D, Coudé du Foresto V, et al. A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. Astron Astrophys. 2013;555:A104. DOI:10.1051/0004-6361/201321673
  • Nuñez PD, Scott NJ, Mennesson B, et al. A near-infrared interferometric survey of debris disc stars. VI. Extending the exozodiacal light survey with CHARA/jouFLU. Astron Astrophys. 2017, submitted.
  • Mennesson B, Hanot C, Serabyn E, et al. High-contrast stellar observations within the diffraction limit at the palomar hale telescope. Astrophys J. 2011;743:178. DOI:10.1088/0004-637X/743/2/178
  • Smith R, Wyatt MC, Haniff CA. Resolving the hot dust around HD69830 and η Corvi with MIDI and VISIR. Astron Astrophys. 2009;503:265–279. DOI:10.1051/0004-6361/200911626
  • Smith R, Wyatt MC, Haniff CA. Resolving the terrestrial planet forming regions of HD 113766 and HD 172555 with MIDI. Mon Not R Astron Soc. 2012;422:2560–2580. DOI:10.1111/j.1365-2966.2012.20816.x
  • Liu WM, Hinz PM, Hoffmann WF, et al. Observations of Main-Sequence Stars and Limits on Exozodical Dust with Nulling Interferometry. Astrophys J. 2009;693:1500–1507. DOI:10.1088/0004-637X/693/2/1500
  • Stock ND, Su KYL, Liu W, et al. The structure of the β Leonis debris disk. Astrophys J. 2010;724:1238–1255. DOI:10.1088/0004-637X/724/2/1238
  • Mennesson B, Millan-Gabet R, Serabyn E, et al. Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck Nuller Mid-infrared surveys. Astrophys J. 2014;797:119. DOI:10.1088/0004-637X/797/2/119
  • Defrère D, Hinz PM, Skemer AJ, et al. First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of η Crv. Astrophys J. 2015;799:42. DOI:10.1088/0004-637X/799/1/42
  • Coudé du Foresto V, Borde PJ, Merand A, et al. FLUOR fibered beam combiner at the CHARA array. In: Traub WA, editors. Interferometry for optical astronomy II, Proc SPIE; 2003 Feb; Vol. 4838; p. 280–285. DOI:10.1117/12.459942
  • Le Bouquin JB, Berger JP, Lazareff B, et al. PIONIER: a 4-telescope visitor instrument at VLTI. Astron Astrophys. 2011;535:A67. DOI:10.1051/0004-6361/201117586
  • Absil O, di Folco E, Mérand A, et al. A near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six early-type dwarfs. Astron Astrophys. 2008;487:1041–1054. DOI:10.1051/0004-6361:200810008
  • Defrère D, Lebreton J, Le Bouquin JB, et al. Hot circumstellar material resolved around β Pic with VLTI/PIONIER. Astron Astrophys. 2012;546:L9. DOI:10.1051/0004-6361/201220287
  • Marion L, Absil O, Ertel S, et al. Searching for faint companions with VLTI/PIONIER. II. 92 main sequence stars from the Exozodi survey. Astron Astrophys. 2014;570:A127. DOI:10.1051/0004-6361/201424780
  • Eiroa C, Marshall JP, Mora A, et al. DUst around NEarby stars. The survey observational results, Astron Astrophys. 2013;555:A11. DOI:10.1051/0004-6361/201321050
  • Matthews BC, Krivov AV, Wyatt MC. Observations, modeling, and theory of debris disks. In: Beuther H, Klessen RS, Dullemond CP, et al., editors. Protostars Planets VI. Tucson: University of Arizona Press; 2014. p. 521–544. DOI:10.2458/azu\_uapress\_9780816531240-ch023
  • Rieke GH, Gáspár A, Ballering NP. Magnetic grain trapping and the hot excesses around early-type stars. Astrophys J. 2016;816:50. DOI:10.1086/426937
  • Williams JP, Cieza LA. Protoplanetary disks and their evolution. Ann Rev Astron Astrophys. 2011;49:67–117. DOI:10.1146/annurev-astro-081710-102548
  • Faramaz V, Ertel S, Booth M, et al. Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds. Mon Not R Astron Soc. 2017;465:2352–2365. DOI:10.1093/mnras/stw2846
  • Kral Q, Thébault P, Charnoz S. LIDT-DD: A new self-consistent debris disc model that includes radiation pressure and couples dynamical and collisional evolution. Astron Astrophys. 2013;558:A121. DOI:10.1051/0004-6361/201321398
  • Krivov AV, Löhne T, Sremčević M. Dust distributions in debris disks: effects of gravity, radiation pressure and collisions. Astron Astrophys. 2006;455:509–519. DOI:10.1051/0004-6361:20064907
  • Wyatt MC, Smith R, Su KYL, et al. Steady state evolution of debris disks around A stars. Astrophys J. 2007;663:365–382. DOI:10.1086/518404
  • Marshall JP, Cotton DV, Bott K, et al. Polarization measurements of hot dust stars and the local interstellar medium. Astrophys J. 2016;825:124. DOI:10.3847/0004-637X/825/2/124
  • Ertel S, Defrère D, Absil O, et al. A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability. Astron Astrophys. 2016;595:A44. DOI:10.1051/0004-6361/201527721
  • Bracewell RN. Detecting nonsolar planets by spinning infrared interferometer. Nature. 1978;274:780. DOI:10.1038/274780a0
  • Colavita MM, Serabyn E, Ragland S, et al. Keck interferometer nuller instrument performance. In: Optical and infrared interferometry II, Proc SPIE; 2010 Jul; Vol. 7734; p. 77340T. DOI:10.1117/12.857166
  • Millan-Gabet R, Serabyn E, Mennesson B, et al. Exozodiacal dust levels for nearby main-sequence stars: a survey with the Keck Interferometer Nuller. Astrophys J. 2011;734:67. DOI:10.1088/0004-637X/734/1/67
  • Weinberger AJ, Bryden G, Kennedy GM, et al. Target selection for the LBTI exozodi key science program. Astrophys J Suppl Ser. 2015;216:24. DOI:10.1088/0067-0049/216/2/24
  • Defrère D, Hinz PM, Mennesson B. Nulling data reduction and on-sky performance of the large binocular telescope interferometer. Astrophys J. 2016;824:66. DOI:10.3847/0004-637X/824/2/66
  • Fajardo-Acosta SB, Beichman CA, Cutri RM. Discovery of new candidate Vega-type systems from IRAS and the 2 micron all-sky survey. Astrophys J Lett. 2000;538:L155–L158. DOI:10.1086/312815
  • Mannings V, Barlow MJ. Candidate main-sequence stars with debris disks: a new sample of Vega-like sources. Astrophys J. 1998;497:330–341. DOI:10.1086/305432
  • Laureijs RJ, Jourdain de Muizon M, Leech K, et al. A 25 micron search for Vega-like disks around main-sequence stars with ISO. Astron Astrophys. 2002;387:285–293. DOI:10.1051/0004-6361:20020366
  • Lawler SM, Beichman CA, Bryden G, et al. Explorations beyond the snow line: Spitzer/IRS spectra of debris disks around solar-type stars. Astrophys J. 2009;705:89–111. DOI:10.1088/0004-637X/705/1/89
  • Chen CH, Li A, Bohac C, et al. The dust and gas around β Pictoris. Astrophys J. 2007;666:466–474. DOI:10.1086/519989
  • Beichman CA, Bryden G, Gautier TN. An excess due to small grains around the nearby K0 V star HD 69830: asteroid or cometary debris? Astrophys J. 2005;626:1061–1069. DOI:10.1086/430059
  • Lisse CM, Beichman CA, Bryden G, et al. On the nature of the dust in the debris disk around HD 69830. Astrophys J. 2007;658:584–592. DOI:10.1086/511001
  • Lisse CM, Wyatt MC, Chen CH, et al. Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η Corvi at ~ 1 Gyr. Astrophys J. 2012;747:93. DOI:10.1088/0004-637X/747/2/93
  • Chen CH, Mittal T, Kuchner M, et al. The spitzer infrared spectrograph debris disk catalog. I. Continuum analysis of unresolved targets. Astrophys J Suppl Ser. 2014;211:25. DOI:10.1088/0067-0049/211/2/25
  • Mittal T, Chen CH, Jang-Condell H, et al. The Spitzer infrared spectrograph debris disk catalog. II. Silicate feature analysis of unresolved targets. Astrophys J. 2015;798:87. DOI:10.1088/0004-637X/798/2/87
  • Beichman CA, Bryden G, Stapelfeldt KR. New debris disks around nearby main-sequence stars: impact on the direct detection of planets. Astrophys J. 2006;652:1674–1693. DOI:10.1086/508449
  • Stark CC, Roberge A, Mandell A, et al. Maximizing the ExoEarth candidate yield from a future direct imaging mission. Astrophys J. 2014;795:122. DOI:10.1088/0004-637X/795/2/122
  • Defrère D, Stark C, Cahoy K, et al. Direct imaging of exoEarths embedded in clumpy debris disks. In: Space telescopes and instrumentation 2012: optical, infrared, and millimeter wave, Proc SPIE; 2012 Sep; Vol. 8442; p. 84420M. DOI:10.1117/12.926324
  • Lebreton J, van Lieshout R, Augereau JC. An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin. Astron Astrophys. 2013;555:A146. DOI:10.1051/0004-6361/201321415
  • Lebreton J, Beichman C, Bryden G, et al. Models of the η corvi debris disk from the keck interferometer, spitzer, and herschel. Astrophys J. 2016;817:165. DOI:10.3847/0004-637X/817/2/165
  • Mennesson B, Absil O, Lebreton J, et al. An Interferometric study of the fomalhaut inner debris disk. II. Keck Nuller mid-infrared observations. Astrophys J. 2013;763:119. DOI:10.1088/0004-637X/763/2/119
  • Aufdenberg JP, Mérand A, Coudé du Foresto V. First results from the CHARA array. VII. Long-baseline interferometric measurements of Vega consistent with a pole-on, rapidly rotating star. Astrophys J. 2006;645:664–675. DOI:10.1086/504149
  • Mennesson B, Serabyn E, Hanot C, et al. New constraints on companions and dust within a few AU of Vega. Astrophys J. 2011;736:14. DOI:10.1088/0004-637X/736/1/14
  • Su KYL, Rieke GH, Malhotra R, et al. Asteroid belts in debris disk twins: Vega and fomalhaut. Astrophys J. 2013;763:118. DOI:10.1088/0004-637X/763/2/118
  • Su KYL, Rieke GH, Defrére D, et al. The inner debris structure in the fomalhaut planetary system. Astrophys J. 2016;818:45. DOI:10.3847/0004-637X/818/1/45
  • Löhne T, Krivov AV, Rodmann J. Long-term collisional evolution of debris disks. Astrophys J. 2008;673:1123–1137. DOI:10.1086/524840
  • Johnson BC, Lisse CM, Chen CH, et al. A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. Astrophys J. 2012;761:45. DOI:10.1088/0004-637X/761/1/45
  • Kennedy GM, Piette A. Warm exo-Zodi from cool exo-Kuiper belts: the significance of P-R drag and the inference of intervening planets. Mon Not R Astron Soc. 2015;449:2304–2311. DOI:10.1093/mnras/stv453
  • Wyatt MC. The insignificance of P-R drag in detectable extrasolar planetesimal belts. Astron Astrophys. 2005;433:1007–1012. DOI:10.1146/annurev-astro-081710-102548
  • Kobayashi H, Watanabe SI, Kimura H, et al. Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting-Robertson drag: An analytical model. Icarus. 2009;201:395–405. DOI:10.1016/j.icarus.2009.01.002
  • Kobayashi H, Kimura H, Watanabe S-I, et al. Sublimation temperature of circumstellar dust particles and its importance for dust ring formation. Earth Planets Space. 2011;63:1067–1075. DOI:10.5047/eps.2011.03.012
  • Kral Q, Latter H. The magnetorotational instability in debris-disc gas. Mon Not R Astron Soc. 2016;461:1614–1620. DOI:10.1093/mnras/stw1429
  • Kral Q, Wyatt M, Carswell RF, et al. A self-consistent model for the evolution of the gas produced in the debris disc of β Pictoris. Mon Not R Astron Soc. 2016;461:845–858. DOI:10.1093/mnras/stw1361
  • Kral Q, Matrà L, Wyatt MC, et al. Predictions for the secondary CO. C and O gas content of debris discs from the destruction of volatile-rich planetesimals, Mon Not R Astron Soc. 2017;469:521–550. DOI:10.1093/mnras/stx730
  • Booth M, Wyatt MC, Morbidelli A, et al. The history of the Solar system’s debris disc: observable properties of the Kuiper belt. Mon Not R Astron Soc. 2009;399:385–398. DOI:10.1111/j.1365-2966.2009.15286.x
  • Bonsor A, Raymond SN, Augereau JC. The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. Mon Not R Astron Soc. 2013;433:2938–2945. DOI:10.1093/mnras/stt933
  • Bonsor A, Raymond SN, Augereau JC, et al. Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. Mon Not R Astron Soc. 2014;441:2380–2391. DOI:10.1093/mnras/stu721
  • Bonsor A, Augereau JC, Thébault P. Scattering of small bodies by planets: a potential origin for exozodiacal dust? Astron Astrophys. 2012;548:A104. DOI:10.1051/0004-6361/201220005
  • Wyatt MC, Bonsor A, Jackson AP, et al. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Mon Not R Astron Soc. 2017;464:3385–3407. DOI:10.1093/mnras/stw2633
  • Raymond SN, Bonsor A. Vega’s hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system. Mon Not R Astron Soc. 2014;442:L18–L22. DOI:10.1088/0004-637X/784/1/40
  • Ormel CW, Ida S, Tanaka H. Migration rates of planets due to scattering of planetesimals. Astrophys J. 2012;758:80. DOI:10.1088/0004-637X/758/2/80
  • Beust H, Morbidelli A. Mean-motion resonances as a source for infalling comets toward β Pictoris. Icarus. 1996;120:358–370. DOI:10.1006/icar.1996.0056
  • Kennedy GM, Wyatt MC. Do two-temperature debris discs have multiple belts? Mon Not R Astron Soc. 2014;444:3164–3182. DOI:10.1093/mnras/stu1665
  • Morales FY, Werner MW, Bryden G, et al. Spitzer Mid-IR spectra of dust debris around A and Late B type stars: asteroid belt analogs and power-law dust distributions. Astrophys J. 2009;699:1067–1086. DOI:10.1088/0004-637X/699/2/1067
  • Reach WT. Structure of the Earth’s circumsolar dust ring. Icarus. 2010;209:848–850. DOI:10.1016/j.icarus.2010.06.034
  • Reach WT, Franz BA, Weiland JL, et al. Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature. 1995;374:521–523. DOI:10.1038/374521a0
  • Leinert C, Moster B. Evidence for dust accumulation just outside the orbit of Venus. Astron Astrophys. 2007;472:335–340. DOI:10.1051/0004-6361:20077682
  • Shannon A, Mustill AJ, Wyatt M. Capture and evolution of dust in planetary mean-motion resonances: a fast, semi-analytic method for generating resonantly trapped disc images. Mon Not R Astron Soc. 2015;448:684–702. DOI:10.1093/mnras/stv045
  • Kenyon SJ, Bromley BC. Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astron J. 2006;131:1837–1850. DOI:10.1086/499807
  • Raymond SN, O’Brien DP, Morbidelli A, et al. Building the terrestrial planets: constrained accretion in the inner solar system. Icarus. 2009;203:644–662. DOI:10.1016/j.icarus.2009.05.016
  • Jackson AP, Wyatt MC. Debris from terrestrial planet formation: the moon-forming collision. Mon Not R Astron Soc. 2012;425:657–679. DOI:10.1111/j.1365-2966.2012.21546.x
  • Kral Q, Thébault P, Augereau JC, et al. Signatures of massive collisions in debris discs. A self-consistent numerical model, Astron Astrophys. 2015;573:A39. DOI:10.1051/0004-6361/201321398
  • Rappaport S, Levine A, Chiang E, et al. Possible disintegrating short-period super-mercury orbiting KIC 12557548. Astrophys J. 2012;752:1. DOI:10.1088/0004-637X/752/1/1
  • Rappaport S, Barclay T, DeVore J, et al. KOI-2700b - A planet candidate with dusty effluents on a 22 hr orbit. Astrophys J. 2014;784:40. DOI:10.1088/0004-637X/784/1/40
  • Sanchis-Ojeda R, Rappaport S, Pallè E, et al. The K2-ESPRINT project I: discovery of the disintegrating rocky planet K2–22b with a cometary head and leading tail. Astrophys J. 2015;812:112. DOI:10.1088/0004-637X/812/2/112
  • Perez-Becker D, Chiang E. Catastrophic evaporation of rocky planets. Mon Not R Astron Soc. 2013;433:2294–2309. DOI:10.1093/mnras/stt895
  • Bochinski JJ, Haswell CA, Marsh TR. Direct evidence for an evolving dust cloud from the exoplanet KIC 12557548 b. Astrophys J Lett. 2015;800:L21. DOI:10.1088/2041-8205/800/2/L21
  • Brogi M, Keller CU, de Juan M. Ovelar, Evidence for the disintegration of KIC 12557548 b. Astron Astrophys. 2012;545:L5. DOI:10.1051/0004-6361/201219762
  • Budaj J. Light-curve analysis of KIC 12557548b: an extrasolar planet with a comet-like tail. Astron Astrophys. 2013;557:A72. DOI:10.1051/0004-6361/201220260
  • van Lieshout R, Min M, Dominik C, et al. Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve. Astron Astrophys. 2016;596:A32. DOI:10.1051/0004-6361/201629250.
  • Kawahara H, Hirano T, Kurosaki K, et al. Starspots-transit depth relation of the evaporating planet candidate KIC 12557548b. Astrophys J Lett. 2013;776:L6. DOI:10.1088/2041-8205/776/1/L6
  • van Lieshout R, Dominik C, Kama M, et al. Near-infrared emission from sublimating dust in collisionally active debris disks. Astron Astrophys. 2014;571:A51. DOI:10.1051/0004-6361/201424876
  • Rieke GH, Su KYL, Stansberry JA, et al. Decay of planetary debris disks. Astrophys J. 2005;620:1010–1026. DOI:10.3847/0004-637X/816/2/50
  • Lignières F, Petit P, Böhm T, et al. First evidence of a magnetic field on Vega. Towards a new class of magnetic A-type stars, Astron Astrophys. 2009;500:L41–L44. DOI:10.1051/0004-6361/200911996
  • Lhotka C, Bourdin P, Narita Y. Charged dust grain dynamics subject to solar wind. Poynting-Robertson drag, and the interplanetary magnetic field, Astrophys J. 2016;828:10. DOI:10.3847/0004-637X/828/1/10
  • Morfill GE, Gruen E. The motion of charged dust particles in interplanetary space. I - The zodiacal dust cloud. II - Interstellar grains. Planet Space Sci. 1979;27:1269–1292. DOI:10.1016/0032-0633(79)90105-3
  • Ragot BR, Kahler SW. Interactions of dust grains with coronal mass ejections and solar cycle variations of the F-coronal brightness. Astrophys J. 2003;594:1049–1059. DOI:10.1086/377076
  • Marsden SC, Petit P, Jeffers SV, et al. A BCool magnetic snapshot survey of solar-type stars. Mon Not R Astron Soc. 2014;444:3517–3536. DOI:10.1093/mnras/stu1663
  • Waite IA, Marsden SC, Carter BD, et al. High-resolution spectroscopy and spectropolarimetry of some late F-/early G-type sun-like stars as targets for Zeeman doppler imaging. Publ Astron Soc Aust. 2011;28:323–337. DOI:10.1071/AS11025
  • Nuñez PD, ten Brummelaar T, Mennesson B, et al. Visibility estimation for the CHARA/JouFLU exozodi survey. Publ Astron Soc Pac. 2017;129:024002. DOI:10.1088/1538-3873/129/972/024002
  • Scott NJ, Millan-Gabet R, Lhomé E, et al. Jouvence of Fluor: upgrades of a fiber beam combiner at the CHARA array. J Astron Instrum. 2013;2:1340005. DOI:10.1142/S2251171713400059
  • Ertel S, Augereau JC, Absil O, et al. An unbiased near-infrared interferometric survey for hot exozodiacal dust. The Messenger. 2015;159:24–29.
  • Kral Q, Clarke C, Wyatt M, et al. Circumstellar discs: what will be next?. ArXiv e-prints. 2017.