21,979
Views
7
CrossRef citations to date
0
Altmetric
Article

ALSUntangled 44: curcumin

References

  • Available at: http://www.alsuntangled.com/open.php. Accessed January 1, 2018. Archived by WebCite® at: http://www.webcitation.org/6w9UBLg03
  • Available at: https://en.wikipedia.org/wiki/Curcumin. Accessed January 14, 2018. Archived by WebCite® at: http://www.webcitation.org/6wTGY73ki
  • Tayyem R, Heath D, Al-Delaimy W, Rock C. Curcumin content of turmeric and curry powders. Nutr Cancer. 2006;55:126–31.
  • Jayaprakasha G, Mohan Rao L, Sakariah K. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem. 2002;50:3668–72.
  • Nelson K, Dahlin J, Bisson J, Graham J, Pauli G, Walters M. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60:1620–37.
  • Shehzad A, Qureshi M, Anwar M, Lee Y. Multifunctional curcumin mediate multitherapeutic effects. J Food Sci. 2017;82:2006–15.
  • Shen L, Liu L, Hong-Fang J. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017;6:1361780.
  • Zhou H, Beevers C, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12:332–47.
  • Amairaj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from tumeric and their derivatives: a review. J Tradit Complement Med. 2016;7:205–33.
  • Patzkó A, Bai Y, Saporta MA, Katona I, Wu X, Vizzuso D, et al. Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain. 2012;135:3551–66.
  • Heger M. Drug screening: Don't discount all curcumin trial data. Nature. 2017;543:40.
  • Hovden H, Frederiksen J, Pedersen S. Immune system alterations in amyotrophic lateral sclerosis. Acta Neurologica Scandinavica. 2013;128:287–96.
  • Sako W, Ito H, Yoshida M, Koizumi H, Kamada M, Fujita K, et al. Nuclear factor κB expression in patients with sporadic amyotrophic lateral sclerosis and hereditary amyotrophic lateral sclerosis with optineurin mutations. Clin Neuropathol. 2012;31:418–23.
  • Frakes A, Ferraiuolo L, Haidet-Phillips A, Schmelzer L, Braun L, Miranda C, et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis . Neuron. 2014;81:1009–23.
  • Patel P, Julien J, Kriz J. Early-stage treatment with withaferin a reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217–33.
  • Swarup V, Phaneuf D, Dupre N, Petri S, Strong N, Kriz J, et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways. J Exp Med. 2011;208:2429–47.
  • Jin C, Lee J, Park C, Choi Y, Kim G. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacologica Sinica. 2007;28:1645–51.
  • Kang G, Kong P, Yuh Y, Lim S, Yim S, Chun W, et al. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor B bindings in BV2 microglial cells. J Pharmacol Sci. 2004;94:325–8.
  • Yang S, Zhang D, Yang Z, Hu X, Qian S, et al. Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res. 2008;33:2044–53.
  • Sharma N, Sharma S, Nehru B. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection. Inflammopharmacol. 2017;25:351–68.
  • Tiwari V, Chopra K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience. 2013;244:147–58.
  • Reuter S, Charlet J, Juncker T, Teiten M, Dicato M, Diederich M. Effect of curcumin on nuclear factor kappaB signaling pathways in human chronic myelogenous K562 leukemia cells. Ann N Y Acad Sci. 2009;1171:436–47.
  • Jobin C, Bradham C, Russo M, Juma B, Narula A, Brenner D, et al. Curcumin blocks cytokine-mediated NF-kB activation and proinflammatory gene expression by inhibiting inhibitory factor I-kB kinase activity. J Immunol. 1999;163:3474–83.
  • Schwertheim S, Wein F, Lennartz K, Worm K, Schmid K, Sheu-Grabellus Y. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells. J Cancer Res Clin Oncol. 2017;143:1143–54.
  • Pimentel-Gutiérrez H, Bobadilla-Morales L, Barba-Barba C, Ortega-De-La-Torre C, Sánchez-Zubieta F, Corona-Rivera J, et al. Curcumin potentiates the effect of chemotherapy against acute lymphoblastic leukemia cells via downregulation of NF-κB. Oncol Lett. 2016;12:4117–24.
  • Kanai M, Otsuka Y, Otsuka K, Sato M, Nishimura T, Mori Y, et al. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemother Pharmacol. 2013;71:1521–30.
  • Bozzo F, Mirra A, Carri M. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett. 2017;636:3–8.
  • Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, Devos D, et al. Panel of oxidative stress and inflammatory biomarkers in ALS: a pilot study. Can J Neurol Sci. 2017;44:90–5.
  • Ikawa M, Okazawa H, Tsujikawa T, Matsunaga A, Yamamura O, Mori T, et al. Increased oxidative stress is related to disease severity in the ALS motor cortex. Neurology. 2015;84:2033–9.
  • Neymotin A, Calingasan N, Wille E, Naseri N, Petri S, Damiano M, et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Rad Biol Med. 2011;51:88–96.
  • Mead R, Higginbottom A, Allen S, Kirby J, Bennet E, Barber S, et al. S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Rad Biol Med. 2013;61:438–52.
  • Tanaka K, Kanno T, Yanagisawa Y, Yasutake K, Inoue S, Hirayama N, et al. A novel acylaminoimidazole derivative, WN1316, alleviates disease progression via suppression of glial inflammation in ALS mouse model. PLoS One. 2014;9:e87728.
  • Ak T, Gulcin A. Antioxidant and radical scavenging properties of curcumin. Chem Biolo Interact. 2008;174:27–37.
  • Cui Q, Li X, Zhu H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep. 2016;13:1381.
  • Li W, Suwanwela N, Patumraj S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc Res. 2016;106:117–27.
  • Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One. 2013;8:e59843.
  • He H, Wang G, Gao Y, Ling W, Yu Z, Jin T. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes. 2012;3:94–104.
  • Sahin K, Pala R, Tuzcu M, Ozdemir O, Orhan C, Sahin N, et al. Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res. 2016;9:147–54.
  • Jiang H, Tian X, Guo Y, Duan W, Bu H, Li C. Activation of nuclear factor erythroid 2-related cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol Pharm Bull. 2011;34:1194–7.
  • Nazari QA, Takada-Takatori Y, Hashimoto T, Imaizumi A, Izumi Y, Kume T. Potential protective effect of highly bioavailable curcumin on an oxidative stress model induced by microinjection of sodium nitroprusside in mice brain. Food Func. 2014;5:984–9.
  • Pungcharoenkul K, Thongnopnua P. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects. Phytother Res. 2011;25:1721–6.
  • Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate pro-oxidant-antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res. 2013;27:1883–8.
  • Kalpravidh R, Siritanaratkul N, Insain P, Charoensakdi R, Panichkul N, Hatairaktham S, et al. Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clin Biochem. 2010;43:424–9.
  • Takahashi M, Suzuki K, Kim H, Otsuka Y, Imaizumi A, Miyashita M, et al. Effects of curcumin supplementation on exercise-induced oxidative stress in humans. Int J Sports Med. 2014;35:469–75.
  • Usharani P, Mateen A, Naidu M, Raju Y, Chandra N. Effect of NCB-02, atorvasatin, and placebo on endothelial function, oxidative stress, and inflammatory markers in patients with type 2 diabetes mellitus. Drugs RD . 2008;9:243–50.
  • Panahi P, Ghanei M, Hajhashemi A, Sahebkar A. Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J Diet Suppl. 2016;13:93–105.
  • Panahi Y, Alishiri G, Parvin S, Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Diet Suppl. 2016;13:209–20.
  • Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian M, Majeed M, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacol. 2017;25:25–31.
  • Panahi Y, Hosseini M, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015;34:1101–8.
  • Hejazia J, Rastmaneshb R, Taleban FA, Molana SH, Hejazi E, Ehtejab G, et al. Effect of curcumin supplementation during radiotherapy on oxidative status of patients with prostate cancer: a double blinded, randomized, placebo-controlled study. Nutr Cancer. 2016;68:77–85.
  • Yang H, Xu W, Zhou Z, Liu J, Li X, Chen L, et al. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp Clin Endocrinol Diabetes. 2015;123:360–7.
  • Parakh S, Atkin J. Protein folding alterations in amyotrophic lateral sclerosis. Brain Res. 2016;1648:633–49.
  • Kieran D, Kalmar B, Dick J, Riddoch-Contreras J, Burnstock G, Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays progression in ALS mice. Nat Med. 2004;10:402–5.
  • Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity. Biochim Biophys Acta. 2015;1854:426–36.
  • Cashman J, Gagliardi S, Lanier M, Ghirmai S, Abel K, Fiala M. Curcumins promote monocytic gene expression related to beta-amyloid and superoxide dismutase clearance. Neurodegenerative Dis. 2012;10:274–6.
  • Longstreth J, Meschke J, Davidson S, Smoot L, Koepsell T. Hypothesis: a motor toxin produced by a clostridial species residing the gut causes ALS. Med Hypotheses. 2005;64:1153.
  • Rowin J, Xia Y, Sun J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep. 2017;5:e13443.
  • Mazzini L, Mogna L, Marchi FD, Amoruso A, Pane M, Aloiso I, et al. Potential role of gut microbiota in ALS pathogenesis. Amyotroph Lateral Scler and Frontotemporal Degenr. 2017;18:245.
  • Brenner D, Hiergeist A, Adis C, Mayer B, Gessner A, Ludolph A, et al. The fecal microbiome of ALS patients. Neurobiol Aging. 2018;61:132–7.
  • Zhang Y, Wu S, Yi J, Xia Y, Jin D, Zhou J, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther. 2017;39:322–36.
  • Labarre A, Guitard E, Parker J. Variation of gut microbiome rescues paralysis and neurodegeneration profiles in C. elegans ALS models. Amyotroph Lateral Scler and Frontotemporal Degenr. 2017;18:245–6.
  • Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M et al. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One. 2017;12:e0185999.
  • Dong H, Xu L, Wu L, Wang X, Duan W, Li H, et al. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience. 2014;272:141–53.
  • Lu J, Duan W, Guo Y, Jiang H, Li Z, Huang J, et al. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull. 2012;89:185–90.
  • Duan W, Guo Y, Xiao J, Chen X, Li Z, Han H, et al. Neuroprotection by monocarbonyl dimethoxycurcumin C: ameliorating the toxicity of mutant TDP-43 via HO-1. Mol Neurobiol. 2014;49:368–79.
  • Available at: https://www.patientslikeme.com/treatments/show/532. Accessed: January 8, 2018. Archived by WebCite® at: http://www.webcitation.org/6wJwJcnpN
  • Harrison D, Bedlack R. ALS reversals: demographics, disease characteristics, treatments and co-morbidities. Presented at American Academy of Neurology April 25, 2017.
  • Ahmadi M, Elmira A, Nafissi S, Jaafari MR, Harirchian MH, Sarraf P, et al. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a pilot randomized clinical trial. Neurotherapeutics. 2018. [Epub ahead of print]. DOI: 10.1007/s13311-018-0606-7
  • Lo Gerfo A, Caldarazzo I, Petrozzi L, Rocchi A, Modena M, Pasquinelli A, et al. Amyotrophic lateral sclerosis and oxidative stress: a double blind trial after dietary supplement by a curcumin donor. Presented at 2nd Congress of European Academy of Neurology May 28–31, 2016.
  • Qin S, Huang L, Gong J, Shen S, Huang J, Ren H, et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J. 2017;16:68.
  • Sahebkar A, Henrotin Y. Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med. 2016;17:1192–202.
  • Al-Karawi D, Al Mamoori D, Tayyar Y. The role of curcumin administration in patients with major depressive disorder: mini meta-analysis of clinical trials. Phytother Res. 2016;30:175–83.
  • Available at: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/PharmacyCompounding/ucm570192.htm. Accessed: January 14, 2018. Archived by WebCite® at: http://www.webcitation.org/6wTFyQ5bh
  • Bahramsoltani R, Rahimi R, Farzaei MH. Pharmacokinetic interactions of curcuminoids with conventional drugs: a review. J Ethnopharmacol. 2017;209:1–12.
  • Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, et al. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Brit J Pharmacol.2012;166:1793–803.
  • Chen Y, Liu WH, Chen BL, Fan L, Han Y, Wang G, et al. Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male chinese volunteers. Ann Pharmacother. 2010;44:1038–45.
  • Juan H, Terhaag B, Cong Z, Bi-Kui Z, Rong-Hua Z, et al. Unexpected effect of concomitantly administered curcumin on the pharmacokinetics of talinolol in healthy Chinese volunteers. Eur J Clin Pharmacol. 2007;63:663–8.
  • Mahran RI, Hagras MM, Sun D, Brenner DE. Bringing curcumin to the clinic in cancer prevention: a review of strategies to enhance bioavailability and efficacy. AAPS J. 2017;19:54–81.
  • Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hasiguchi M, Tsujiko K, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy volunteers. Cancer Chemother Pharmacol. 2012;69:65–70.
  • Sunagawa Y, Hirano S, Katanasaka Y, Miyazaki Y, Funamato M, Okamura N, et al. Colloidal submicron particle curcumin exhibits high absorption efficiency-a double blind, 3 way crossover study. J Nutr Sci Vitaminol. 2015;61:37–44.
  • Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, et al. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod. 2011;74:664–9.
  • Available from: http://dolcas-biotech.com/products/bcm95/. Accessed: January 15, 2018. Archived by WebCite® at: http://www.webcitation.org/6wV3tc5py
  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinvas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–6.
  • Small G, Siddarth P, Zhaoping L, Miller K, Ercoli L, Emerson N, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry. 2017;17:S1064.
  • Available at: http://www.integrativepro.com/Products/Metabolic/Theracurmin-HP. Accessed January 15, 2018. Archived by WebCite® at: http://www.webcitation.org/6wUXG11HH

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.