71
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomarkers and progress of antioxidant therapy for rare mitochondrial disorders

, , , , &
Pages 591-603 | Received 24 Nov 2015, Accepted 12 Apr 2016, Published online: 28 Apr 2016

References

  • Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem. 2007;76:701–722.
  • Swerdlow RH. Brain aging, Alzheimer’s disease, and mitochondria. Biochim Biophys Acta. 2011;1812(12):1630–1639.
  • Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252.
  • Houtkooper RH, Mouchiroud L, Ryu D, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497(7450):451–457.
  • Chatzispyrou IA, Held NM, Mouchiroud L, et al. Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res. 2015;75(21):4446–4449.
  • Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov. 2013;12(6):465–483.
  • Rajput NK, Singh V, Bhardwaj A, Resources, challenges and way forward in rare mitochondrial diseases research. Version 2. F1000Res. 2015;4:70.
  • Kumar A, Singh A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol. 2015;6:206.
  • Wu S-B, Ma Y-S, Wu Y-T, et al. Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol. 2010;41(2–3):256–266.
  • Alexeyev MF. Is there more to aging than mitochondrial DNA and reactive oxygen species? FEBS J. 2009;276(20):5768–5787.
  • Quinlan CL, Goncalves RL, Hey-Mogensen M, et al. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem. 2014;289(12):8312–8325.
  • Quinlan CL, Orr AL, Perevoshchikova IV, et al. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 2012;287(32):27255–27264.
  • Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen species. Hypertension. 2009;53(6):885–892.
  • Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A. 1997;94(21):11168–11172.
  • Adam-Vizi V, Tretter L. The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem Int. 2013;62(5):757–763.
  • Maraldi T. Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev. 2013;2013:271602.
  • Crosas-Molist E, Fabregat I. Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol. 2015;6:106–111.
  • Yen M-Y, Kao S-H, Wang A-G, et al. Increased 8-hydroxy-2ʹ-deoxyguanosine in leukocyte DNA in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2004;45(6):1688–1691.
  • Canter JA, Eshaghian A, Fessel J, et al. Degree of heteroplasmy reflects oxidant damage in a large family with the mitochondrial DNA A8344G mutation. Free Radic Biol Med. 2005;38(5):678–683.
  • Piccolo G, Banfi P, Azan G, et al. Biological markers of oxidative stress in mitochondrial myopathies with progressive external ophthalmoplegia. J Neurol Sci. 1991;105(1):57–60.
  • Umaki Y, Mitsui T, Endo I, et al. Apoptosis-related changes in skeletal muscles of patients with mitochondrial diseases. Acta Neuropathol. 2002;103(2):163–170.
  • Wei YH, Lee CF, Lee HC, et al. Increases of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4,977 BP-deleted mitochondrial DNA. Ann N Y Acad Sci. 2001;928:97–112.
  • Pang CY, Lee HC, Wei YH. Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract. 2001;54 Suppl 2:S45–S56.
  • Wei Y-H, Lee H-C. Mitochondrial DNA mutations and oxidative stress in mitochondrial diseases. Adv Clin Chem. 2003;37:83–128.
  • Vattemi G, Mechref Y, Marini M, et al. Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement. Mol Cell Proteomics. 2011;10(4):M110.002964.
  • Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta. 2015;1847(6–7):544–557.
  • Gorąca A, Huk-Kolega H, Piechota A, et al. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63(4):849–858.
  • Du H, Yan SS. Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol. 2010;42(5):560–572.
  • Hauptmann S, Keil U, Scherping I, et al. Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp Gerontol. 2006;41(7):668–673.
  • Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92.
  • Moreira PI, Carvalho C, Zhu X, et al. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802(1):2–10.
  • Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):320–330.
  • Dimauro S, Mancuso M. Mitochondrial diseases: therapeutic approaches. Biosci Rep. 2007;27(1–3):125–137.
  • Parikh S, Saneto R, Falk MJ, et al. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11(6):414–430.
  • Van Maldergem L, Trijbels F, DiMauro S, et al. Coenzyme Q-responsive Leigh’s encephalopathy in two sisters. Ann Neurol. 2002;52(6):750–754.
  • Huang C-C, Kuo H-C, Chu C-C, et al. Rapid visual recovery after coenzyme q10 treatment of leber hereditary optic neuropathy. J Neuroophthalmol. 2002;22:66.
  • Glover EI, Martin J, Maher A, et al. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve. 2010;42(5):739–748.
  • Ikejiri Y, Mori E, Ishii K, et al. Idebenone improves cerebral mitochondrial oxidative metabolism in a patient with MELAS. Neurology. 1996;47:583–585.
  • Hausse AO, Aggoun Y, Bonnet D, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87(4):346–349.
  • Haginoya K, Miyabayashi S, Kikuchi M, et al. Efficacy of idebenone for respiratory failure in a patient with Leigh syndrome: a long-term follow-up study. J Neurol Sci. 2009;278(1–2):112–114.
  • Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab. 2012;105(1):91–102.
  • Sadun AA, Chicani CF, Ross-Cisneros FN, et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol. 2012;69(3):331–338.
  • Pastore A, Petrillo S, Tozzi G, et al. Glutathione: a redox signature in monitoring EPI-743 therapy in children with mitochondrial encephalomyopathies. Mol Genet Metab. 2013;109(2):208–214.
  • Pineda M, Ormazabal A, López-Gallardo E, et al. Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann Neurol. 2006;59(2):394–398.
  • Ramaekers VT, Weis J, Sequeira JM, et al. Mitochondrial complex I encephalomyopathy and cerebral 5-methyltetrahydrofolate deficiency. Neuropediatrics. 2007;38(4):184–187.
  • Hasselmann O, Blau N, Ramaekers VT, et al. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol Genet Metab. 2010;99(1):58–61.
  • Quijada-Fraile P, O’Callaghan M, Martín-Hernández E, et al. Follow-up of folinic acid supplementation for patients with cerebral folate deficiency and Kearns-Sayre syndrome. Orphanet J Rare Dis. 2014;9:217.
  • Haroon MF, Fatima A, Schöler S, et al. Minocycline, a possible neuroprotective agent in Leber’s hereditary optic neuropathy (LHON): studies of cybrid cells bearing 11,778 mutation. Neurobiol Dis. 2007;28(3):237–250.
  • Mancuso M, Orsucci D, Calsolaro V, et al. Tetracycline treatment in patients with progressive external ophthalmoplegia. Acta Neurol Scand. 2011;124(6):417–423.
  • Rodriguez MC, MacDonald JR, Mahoney DJ, et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007;35(2):235–242.
  • Mancuso M, Orsucci D, Logerfo A, et al. Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol. 2010;257(5):774–781.
  • Scarpelli M, Todeschini A, Rinaldi F, et al. Strategies for treating mitochondrial disorders: an update. Mol Genet Metab. 2014;113(4):253–260.
  • Remes AM, Liimatta EV, Winqvist S, et al. Ubiquinone and nicotinamide treatment of patients with the 3243A–>G mtDNA mutation. Neurology. 2002;59(8):1275–1277.
  • Rahman S. Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis. 2015;38(4):641–653.
  • Potgieter M, Pretorius E, Pepper MS. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr Rev. 2013;71(3):180–188.
  • Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–199.
  • Quinzii CM, Hirano M. Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev. 2010;16(2):183–188.
  • De la Mata M, Garrido-Maraver J, Cotán D, et al. Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10. Neurotherapeutics. 2012;9(2):446–463.
  • Pfeffer G, Majamaa K, Turnbull DM, et al. Treatment for mitochondrial disorders. Cochrane Database Syst Rev. 2012;4: CD004426. doi:10.1002/14651858.
  • Kerr DS. Review of clinical trials for mitochondrial disorders: 1997–2012. Neurotherapeutics. 2013;10(2):307–319.
  • Gueven N, Faldu D. Idebenone treatment in Leber’s hereditary optic neuropathy: rationale and efficacy. Exp Opin Orph Drugs. 2013;1:331–339.
  • Lee E-H, Ahn M-S, Hwang J-S, et al. A Korean female patient with thiamine-responsive pyruvate dehydrogenase complex deficiency due to a novel point mutation (Y161C) in the PDHA1 gene. J Korean Med Sci. 2006;21:800–804.
  • Sedel F, Challe G, Mayer J-M, et al. Thiamine responsive pyruvate dehydrogenase deficiency in an adult with peripheral neuropathy and optic neuropathy. J Neurol Neurosurg Psychiatry. 2008;79:846–847.
  • Brière J-J, Schlemmer D, Chretien D, et al. Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochem Biophys Res Commun. 2004;316(4):1138–1142.
  • Schulz JB, Dehmer T, Schols L, et al. Oxidative stress in patients with Friedreich ataxia. Neurology. 2000;55(11):1719–1721.
  • Di Prospero N, Baker A, Jeffries N, et al. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007;6(10):878–886.
  • Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal. 2015;22(8):686–729.
  • Erb M, Hoffmann-Enger B, Deppe H, et al. Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS One. 2012;7:e36153.
  • Martinelli D, Catteruccia M, Piemonte F, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease–genetically defined Leigh syndrome. Mol Genet Metab. 2012;107(3):383–388.
  • Hargreaves IP. Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol. 2014;49:105–111.
  • Shrader WD, Amagata A, Barnes A, et al. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg Med Chem Lett. 2011;21(12):3693–3698.
  • El-Hattab AW, Emrick LT, Craigen WJ, et al. Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol Genet Metab. 2012;107(3):247–252.
  • Naini A, Kaufmann P, Shanske S, et al. Hypocitrulline-mia in patients with MELAS: an insight into the “MELAS paradox”. J Neurol Sci. 2005;229:87–193.
  • El-Hattab AW, Emrick LT, Chanprasert S, et al. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome. Int J Biochem Cell Biol. 2014;48:85–91.
  • El-Hattab AW, Hsu JW, Emrick LT, et al. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab. 2012;105(4):607–614.
  • Teerlink T, Luo Z, Palm F, et al. Cellular ADMA: regulation and action. Pharmacol Res. 2009;60:448–460.
  • Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology. Lancet Neurol. 2004;3(12):744–751.
  • Rotem-Dai N, Oberkovitz G, Abu-Ghanem S, et al. PKCeta confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells. Exp Cell Res. 2009;315(15):2616–2623.
  • Cieslik M, Pyszko J, Strosznajder JB. Docosahexaenoic acid and tetracyclines as promising neuroprotective compounds with poly(ADP-ribose) polymerase inhibitory activities for oxidative/genotoxic stress treatment. Neurochem Int. 2013;62(5):626–636.
  • Orsucci D, Mancuso M, Filosto M, et al. Tetracyclines and neuromuscular disorders. Curr Neuropharmacol. 2012;10(2):134–138.
  • Kalghatgi S, Spina CS, Costello JC, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med. 2013;5(192):192ra85.
  • Omar A, Johnson LN. Tetracycline delays ocular motility decline in chronic progressive external ophthalmoplegia. Neurology. 2007;68(14):1159–1160.
  • Ormazabal A, Casado M, Molero-Luis M, et al. Can folic acid have a role in mitochondrial disorders? Drug Discov Today. 2015. pii: S1359-6446(15)00273-1. doi:10.1016/j.drudis.2015.07.002.
  • Chou Y-F, Yu C-C, Huang RF. Changes in mitochondrial DNA deletion, content, and biogenesis in folate-deficient tissues of young rats depend on mitochondrial folate and oxidative DNA injuries. J Nutr. 2007;137(9):2036–2042.
  • Chang C-M, Yu C-C, Lu H-T, et al. Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization and superoxide overproduction in rat liver. Br J Nutr. 2007;97(5):855–863.
  • Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol. 2001;49:561–574.
  • Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA. 2004;101(10):3381–6.69.
  • Bilska A, Włodek L. Lipoic acid - the drug of the future? Pharmacol Rep. 2005;57(5):570–577.
  • Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition. 2001;17(10):888–895.
  • Bast A, Haenen GR. Lipoic acid: a multifunctional antioxidant. Biofactors. 2003;17(1–4):207–213.
  • Bitar MS, Ayed AK, Abdel-Halim SM, et al. Inflammation and apoptosis in aortic tissues of aged type II diabetes: amelioration with alpha-lipoic acid through phosphatidylinositol 3-kinase/Akt- dependent mechanism. Life Sci. 2010;86(23–24):844–853.
  • Marangon K, Devaraj S, Tirosh O, et al. Comparison of the effect of α-lipoic acid and α-tocopherol supplementation on measures of oxidative stress. Free Radic Biol Med. 1999;27:1114–1121.
  • Mahoney DJ, Parise G, Tarnopolsky MA. Nutritional and exercise-based therapies in the treatment of mitochondrial disease. Curr Opin Clin Nutr Metab Care. 2002;5(6):619–629.
  • Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2015. doi:10.1080/10408398.2015.1077195.
  • Wang X, Leung AW, Luo J, et al. TEM observation of ultrasound-induced mitophagy in nasopharyngeal carcinoma cells in the presence of curcumin. Exp Ther Med. 2012;3(1):146–148.
  • Gerards M, Kamps R, van Oevelen J, et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain. 2013;136(Pt 3):882–890.
  • Garrido-Maraver J, Cordero MD, Moñino ID, et al. Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease. Br J Pharmacol. 2012;167(6):1311–1328.
  • Napolitano A, Salvetti S, Vista M, et al. Long-term treatment with idebenone and riboflavin in a patient with MELAS. Neurol Sci. 2000;21(5 Suppl):S981–S982.
  • Blanchet L, Smeitink JA, van Emst-de Vries SE, et al. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning. Sci Rep. 2015;5:8035. doi:10.1038/srep08035.
  • Mashima Y, Kigasawa K, Wakakura M, et al. Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? J Neuroophthalmol. 2000;20(3):166–170.
  • Ramis MR, Esteban S, Miralles A, et al. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem. 2015;22(22):2690–2711. Abstract.
  • Smith RA, Adlam VJ, Blaikie FH, et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann N Y Acad Sci. 2008;1147:105–111.
  • Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656.
  • Jameson VJ, Cochemé HM, Logan A, et al. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron. 2015;71(44):8444–8453.
  • Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.
  • Finichiu PG, Larsen DS, Evans C, et al. A mitochondria-targeted derivative of ascorbate: MitoC. Free Radic Biol Med. 2015;89:668–678.
  • Trnka J, Blaikie FH, Logan A, et al. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res. 2009;43(1):4–12.
  • Jaiswal AK. Regulation of genes encoding NAD(P)H: quinoneoxidoreductases. Free Radic Biol Med. 2000;29(3–4):254–262.
  • Pink JJ, Planchon SM, Tagliarino C, et al. NAD(P)H: quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J Biol Chem. 2000;275(8):5416–5424.
  • Jeong MH, Kim JH, Seo K-S, et al. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells. Biochem Biophys Res Commun. 2014;454(3):417–422.
  • Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88(Pt B):179–188.
  • Kumar H, Kim I-S, More SV, et al. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31(1):109–139.
  • Procaccio V, Bris C, Chao de la Barca JM, et al. Perspectives of drug-based neuroprotection targeting mitochondria. Rev Neurol (Paris). 2014;170(5):390–400.
  • Robinson A, Grösgen S, Mett J, et al. Upregulation of PGC-1α expression by Alzheimer’s disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP. Aging Cell. 2014;13(2):263–272.
  • Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 2016;68(1):20–48.
  • Fernandes RO, Bonetto JH, Baregzay B, et al. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts. Mol Cell Biochem. 2015;401(1–2):61–70.
  • A study of bezafibrate in mitochondrial myopathy. 2016. Available from: http://www.mitoaction.org/study
  • Iyer S. Novel therapeutic approaches for Leber’s hereditary optic neuropathy. Discov Med. 2013;15(82):141–149.
  • Antonenkov VD, Isomursu A, Mennerich D, et al. The human mitochondrial DNA depletion syndrome gene MPV17 encodes a non-selective channel that modulates membrane potential. J Biol Chem. 2015;290(22):13840–13861.
  • Dalla Rosa I, Cámara Y, Durigon R, et al. MPV17 loss causes deoxynucleotide insufficiency and slow DNA replication in mitochondria. PLoS Genet. 2016;12(1):e1005779.
  • Safety study of an adeno-associated virus vector for gene therapy of Leber’s Hereditary Optic Neuropathy (LHON). 2016. Available from: http://www.mitoaction.org/study.
  • Safety evaluation of gene therapy in Leber Hereditary Optic Neuropathy (LHON) patients. 2015. Available from: http://www.mitoaction.org/study.
  • Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for leber hereditary optic neuropathy: initial results. Ophthalmology. 2015. doi:10.1016/j.ophtha.2015.10.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.