240
Views
27
CrossRef citations to date
0
Altmetric
Review

Translating HDAC inhibitors in Friedreich’s ataxia

&
Pages 961-970 | Received 02 Jun 2016, Accepted 19 Jul 2016, Published online: 31 Jul 2016

References

  • Campuzano V , Montermini L , Molto MD , et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–1427.
  • Saveliev A , Everett C , Sharpe T , et al. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature. 2003;422:909–913.
  • Herman D , Jenssen K , Burnett R , et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2:551–558.
  • Al-Mahdawi S , Pinto RM , Ismail O , et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet. 2008;17:735–746.
  • Greene E , Mahishi L , Entezam A , et al. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucl Acids Res. 2007;35:3383–3390.
  • De Biase I , Chutake YK , Rindler PM , et al. Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription. PLoS One. 2009;4:e7914.
  • Metz G , Coppard N , Cooper JM , et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain. 2013;136:259–268.
  • Cossee M , Durr A , Schmitt M , et al. Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol. 1999;45:200–206.
  • Tsou AY , Paulsen EK , Lagedrost SJ , et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307:46–49.
  • Pastore A , Puccio H. Frataxin: a protein in search for a function. J Neurochem. 2013;126 Suppl 1:43–52.
  • Maio N , Rouault TA . Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim Biophys Acta. 2015;1853:1493–1512.
  • Martelli A , Puccio H . Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol. 2014;5:130.
  • Parkinson MH , Schulz JB , Giunti P . Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem. 2013;126 Suppl 1:125–141.
  • Pandolfo M , Hausmann L . Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem. 2013;126 Suppl 1:142–146.
  • Puccio H , Anheim M , Tranchant C . Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev Neurol (Paris). 2014;170:355–365.
  • Strawser CJ , Schadt KA , Lynch DR . Therapeutic approaches for the treatment of Friedreich’s ataxia. Expert Rev Neurother. 2014;14:949–957.
  • Elincx-Benizri S , Glik A , Merkel D , et al. Clinical experience with deferiprone treatment for Friedreich ataxia. J Child Neurol. 2016;31:1036–1040.
  • Perdomini M , Belbellaa B , Monassier L , et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20:542–547.
  • Vyas PM , Tomamichel WJ , Pride PM , et al. A TAT-Frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2011;21:1230–1247.
  • Chan PK , Torres R , Yandim C , et al. Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet. 2013;22:2662–2675.
  • Acquaviva F , Castaldo I , Filla A , et al. Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum. 2008;7:360–365.
  • Sahdeo S , Scott BD , McMackin MZ , et al. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich’s ataxia. Hum Mol Genet. 2014;23:6848–6862.
  • Tomassini B , Arcuri G , Fortuni S , et al. Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model. Hum Mol Genet. 2012;21:2855–2861.
  • Cherubini F , Serio D , Guccini I , et al. Src inhibitors modulate frataxin protein levels. Hum Mol Genet. 2015;24:4296–4305.
  • Li L , Matsui M , Corey DR . Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun. 2016;7:10606.
  • Rufini A , Fortuni S , Arcuri G , et al. Preventing the ubiquitin-proteasome-dependent degradation of frataxin, the protein defective in Friedreich’s ataxia. Hum Mol Genet. 2011;20:1253–1261.
  • Ohshima K , Montermini L , Wells RD , et al. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem. 1998;273:14588–14595.
  • Bidichandani SI , Ashizawa T , Patel PI . The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998;62:111–121.
  • Baralle M , Pastor T , Bussani E , et al. Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing. Am J Hum Genet. 2008;83:77–88.
  • Zoghbi HY , Orr HT . Trinucleotide repeat disorders. Ann Rev Neurosci. 2007;30:575–621.
  • Soragni E , Miao W , Iudicello M , et al. Epigenetic therapy for Friedreich’s ataxia. Ann Neurol. 2014;76:489–508.
  • Wells RD . DNA triplexes and Friedreich ataxia. FASEB J. 2008;22:1625–1634.
  • Sakamoto N , Ohshima K , Montermini L , et al. Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem. 2001;276:27171–27177.
  • Gacy AM , Goellner GM , Spiro C , et al. GAA instability in Friedreich’s ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol Cell. 1998;1:583–593.
  • Mariappan SV , Catasti P , Silks LA 3rd , et al. The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich’s ataxia. J Mol Biol. 1999;285:2035–2052.
  • Burnett R , Melander C , Puckett JW , et al. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci U S A. 2006;103:11497–11502.
  • Harki DA , Satyamurthy N , Stout DB , et al. In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography. Proc Natl Acad Sci U S A. 2008;105:13039–13044.
  • Grabczyk E , Usdin K . Alleviating transcript insufficiency caused by Friedreich’s ataxia triplet repeats. Nucleic Acids Res. 2000;28:4930–4937.
  • Grabczyk E , Usdin K . The GAA*TTC triplet repeat expanded in Friedreich’s ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res. 2000;28:2815–2822.
  • Groh M , Lufino MM , Wade-Martins R , et al. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 2014;10:e1004318.
  • Festenstein R . Breaking the silence in Friedreich’s ataxia. Nat Chem Biol. 2006;2:512–513.
  • Rai M , Soragni E , Chou CJ , et al. Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model. PLoS One. 2010;5:e8825.
  • Kumari D , Biacsi RE , Usdin K . Repeat expansion affects both transcription initiation and elongation in Friedreich ataxia cells. J Biol Chem. 2011;286:4209–4215.
  • Kim E , Napierala M , Dent SYR . Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich’s ataxia. Nucleic Acids Res. 2011;39:8366–8377.
  • Yandim C , Natisvili T , Festenstein R . Gene regulation and epigenetics in Friedreich’s ataxia. J Neurochem. 2013;126 Suppl 1:21–42.
  • Di Croce L , Helin K . Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147–1155.
  • Rai M , Soragni E , Jenssen K , et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE. 2008;3:e1958. doi:10.1371/journal.pone.0001958.
  • Punga T , Buhler M . Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med. 2010;2:120–129.
  • Li Y , Lu Y , Polak U , et al. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum Mol Genet. 2015;24:6932–6943.
  • Chutake YK , Costello WN , Lam C , et al. Altered nucleosome positioning at the transcription start site and deficient transcriptional initiation in Friedreich ataxia. J Biol Chem. 2014;289:15194–15202.
  • Chutake YK , Costello WN , Lam CC , et al. FXN promoter silencing in the humanized mouse model of Friedreich ataxia. PLoS One. 2015;10:e0138437.
  • Chutake YK , Lam C , Costello WN , et al. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann Neurol. 2014;76:522–528.
  • Di Prospero NA , Fischbeck KH . Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet. 2005;6:756–765.
  • Kazantsev AG , Thompson LM . Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7:854–868.
  • Cole PA . Chemical probes for histone-modifying enzymes. Nat Chem Biol. 2008;4:590–597.
  • Bradner JE , West N , Grachan ML , et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6:238–243.
  • Ahuja N , Sharma AR , Baylin SB . Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89.
  • Irwin MH , Moos WH , Faller DV , et al. Epigenetic treatment of neurodegenerative disorders: Alzheimer and Parkinson diseases. Drug Dev Res. 2016;77:109–123.
  • Sandi C , Pinto RM , Al-Mahdawi S , et al. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis. 2011;42:496–505.
  • Chutake YK , Lam CC , Costello WN , et al. Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor. Nucleic Acids Res. 2016;44:5095–5104.
  • Plasterer HL , Deutsch EC , Belmonte M , et al. Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich’s ataxia. PLoS One. 2013;8:e63958.
  • Soragni E , Xu C , Plasterer HL , et al. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol. 2012;27:1164–1173.
  • Vaquero A , Scher M , Erdjument-Bromage H , et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007;450:440–444.
  • Beckers, T. , Burkhardt C , Wieland H , et al. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer. 2007;121:1138.
  • Chou CJ , Herman D , Gottesfeld JM . Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J Biol Chem. 2008;283:35402–35409.
  • Evans MJ , Cravatt BF . Mechanism-based profiling of enzyme families. Chem Rev. 2006;106:3279–3301.
  • Salisbury CM , Cravatt BF . Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc Natl Acad Sci U S A. 2007;104:1171–1176.
  • Xu C , Soragni E , Chou CJ , et al. Chemical probes identify a role for histone deacetylase 3 in Friedreich’s ataxia gene silencing. Chem Biol. 2009;16:980–989.
  • Lauffer BEL , Mintzer R , Fong R , et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 2013;288:26926–26943.
  • Methot JL , Chakravarty PK , Chenard M , et al. Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg Med Chem Lett. 2008;18:973–978.
  • Jia H , Pallos J , Jacques V , et al. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis. 2012;46:351–361.
  • Malvaez M , McQuown SC , Rogge GA , et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A. 2013;110:2647–2652.
  • Napper AD , Hixon J , McDonagh T , et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005;48:8045–8054.
  • Soragni E , Chou CJ , Rusche JR , et al. Mechanism of action of 2-aminobenzamide hdac inhibitors in reversing gene silencing in Friedreich’s ataxia. Front Neurol. 2015;6:44.
  • Coppola G , Burnett R , Perlman S , et al. A gene expression phenotype in lymphocytes from Friedreich ataxia patients. Ann Neurol. 2011;70:790–804.
  • Shan B , Xu C , Zhang Y , et al. Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich’s ataxia patient iPSC-derived neural stem cells. J Proteome Res. 2014;13:4558–4566.
  • Bantscheff M , Hopf C , Savitski MM , et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011;29:255–265.
  • Ditch S , Sammarco MC , Banerjee A , et al. Progressive GAA?TTC repeat expansion in human cell lines. PLoS Genet. 2009;5:e1000704. doi: 10.1371/journal.pgen.1000704.
  • Debacker K , Frizzell A , Gleeson O , et al. Histone deacetylase complexes promote trinucleotide repeat expansions. PLoS Biol. 2012;10:e1001257.
  • Libri V , Yandim C , Athanasopoulos S , et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet. 2014;384:504–513.
  • Xu C , Soragni E , Jacques V , et al. Improved histone deacetylase inhibitors as therapeutics for the neurodegenerative disease Friedreich’s ataxia: a new synthetic route. Pharmaceuticals. 2011;4:1578–1590.
  • Biterge B , Schneider R . Histone variants: key players of chromatin. Cell Tissue Res. 2014;356:457–466.
  • Beconi M , Aziz O , Matthews K , et al. Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PLoS One. 2012;7:e44498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.