122
Views
3
CrossRef citations to date
0
Altmetric
Review

Pathophysiology, current treatments and future targets in hereditary forms of renal Fanconi syndrome

, , , &
Pages 45-54 | Received 10 Aug 2016, Accepted 08 Nov 2016, Published online: 30 Nov 2016

References

  • Kleta R, Gahl WA. Cystinosis: antibodies and healthy bodies. J Am Soc Nephrol. 2002;13(8):2189–2191.
  • De Toni G. Remarks on the relationship between Renal Rickets (Renal Dwarfism) and Renal diabetes. Acta Paediatrica. 1933;16:479–484.
  • Debre R, Marie J, Cleret F, et al. Rachitisme tardif coexistant avec une Nephrite chronique et une Glycosurie. Archive De Medicine Des Enfants. 1934;37:597–606.
  • Kleta R, Bockenhauer D. Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol. 2006;104(2):p73–p80.
  • Avner ED, Harmon WE, Niaudet P, et al. Pediatric Nephrology. 6th ed. Berlin: Springer; 2009.
  • Klootwijk ED, Reichold M, Unwin RJ, et al. Renal Fanconi syndrome: taking a proximal look at the nephron. Nephrol Dial Transplant. 2015;30(9):1456–1460.
  • Rose BD. Clinical physiology of acid-base and electrolyte disorders. New York: McGraw-Hill; 1977.
  • Hoopes RR Jr., Shrimpton AE, Knohl SJ, et al. Dent disease with mutations in OCRL1. Am J Hum Genet. 2005;76(2):260–267.
  • Kleta R. Fanconi or not Fanconi? lowe syndrome revisited. Clin J Am Soc Nephrol. 2008;3(5):1244–1245.
  • Christensen EI, Birn H, Storm T, et al. Endocytic receptors in the renal proximal tubule. Physiology (Bethesda, Md). 2012;27(4):223–236.
  • Hou J. The kidney tight junction (review). Int J Mol Med. 2014;34(6):1451–1457.
  • Wilmes A, Aschauer L, Limonciel A, et al. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol Appl Pharmacol. 2014;279(2):163–172.
  • Camargo SM, Bockenhauer D, Kleta R. Aminoacidurias: clinical and molecular aspects. Kidney Int. 2008;73(8):918–925.
  • Plumb LA, van’t Hoff W, Kleta R, et al. Renal apnoea: extreme disturbance of homoeostasis in a child with Bartter syndrome type IV. Lancet. 2016;388:631–632.
  • Igarashi T, Sekine T, Inatomi J, et al. Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol. 2002;13(8):2171–2177.
  • Boron WF. Acid-base transport by the renal proximal tubule. J Am Soc Nephrol. 2006;17(9):2368–2382.
  • Seki G, Nakamura M, Suzuki M, et al. Species differences in regulation of renal proximal tubule transport by certain molecules. World J Nephrol. 2015;4(2):307–312.
  • Magen D, Berger L, Coady MJ, et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med. 2010;362(12):1102–1109.
  • Biber J, Hernando N, Forster I, et al. Regulation of phosphate transport in proximal tubules. Pflugers Arch. 2009;458(1):39–52.
  • Walton RJ, Bijvoet OL. A simple slide-rule method for the assessment of renal tubular reaborption of phosphate in man. Clin Chim Acta. 1977;81(3):273–276.
  • Norden AG, Lapsley M, Lee PJ, et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 2001;60(5):1885–1892.
  • Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3(4):256–266.
  • Dickson LE, Wagner MC, Sandoval RM, et al. The proximal tubule and albuminuria: really! J Am Soc Nephrol. 2014;25(3):443–453.
  • Dhooria GS, Bains HS. Nephrotic range proteinuria as a presenting feature of classical nephropathic cystinosis. Indian J Pediatr. 2014;81(7):712–714.
  • Chesney RW. Interactions of vitamin D and the proximal tubule. Pediatr Nephrol. 2016;31(1):7–14.
  • O’Brien K, Hussain N, Warady BA, et al. Nodular regenerative hyperplasia and severe portal hypertension in cystinosis. Clin Gastroenterol Hepatol. 2006;4(3):387–394.
  • Emma F, Nesterova G, Langman C, et al. Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant. 2014;29(Suppl 4):iv87–94.
  • Kleta R, Kaskel F, Dohil R, et al. First NIH/office of rare diseases conference on Cystinosis: past, present, and future. Pediatr Nephrol. 2005;20(4):452–454.
  • Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med. 2002;347(2):111–121.
  • Bendavid C, Kleta R, Long R, et al. FISH diagnosis of the common 57-kb deletion in CTNS causing cystinosis. Hum Genet. 2004;115(6):510–514.
  • Levtchenko E, van den Heuvel L, Emma F, et al. Clinical utility gene card for: cystinosis. Eur J Hum Genet. 2014;22:5.
  • Topaloglu R, Vilboux T, Coskun T, et al. Genetic basis of cystinosis in Turkish patients: a single-center experience. Pediatr Nephrol. 2012;27(1):115–121.
  • Kleta R, Anikster Y, Lucero C, et al. CTNS mutations in African American patients with cystinosis. Mol Genet Metab. 2001;74(3):332–337.
  • Cetinkaya I, Schlatter E, Hirsch JR, et al. Inhibition of Na(+)-dependent transporters in cystine-loaded human renal cells: electrophysiological studies on the Fanconi syndrome of cystinosis. J Am Soc Nephrol. 2002;13(8):2085–2093.
  • Medlar A, Kleta R. Cystinosis and mickey mouse. Nephrol Dial Transplant. 2010;25(4):1032–1033.
  • Gaide Chevronnay HP, Janssens V, van der Smissen P, et al. Time course of pathogenic and adaptation mechanisms in cystinotic mouse kidneys. J Am Soc Nephrol. 2014;25(6):1256–1269.
  • Galarreta CI, Forbes MS, Thornhill BA, et al. The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. Am J Physiol Renal Physiol. 2015;308(10):F1155–66.
  • Mahoney CP, Striker GE. Early development of the renal lesions in infantile cystinosis. Pediatr Nephrol. 2000;15(1–2):50–56.
  • Greco M, Brugnara M, Zaffanello M, et al. Long-term outcome of nephropathic cystinosis: a 20-year single-center experience. Pediatr Nephrol. 2010;25(12):2459–2467.
  • Gahl WA, Balog JZ, Kleta R. Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann Intern Med. 2007;147(4):242–250.
  • Kleta R. A deeper look into cysteamine absorption for the treatment of cystinosis. J Pediatr. 2006;148(6):718–719.
  • Sonies BC, Almajid P, Kleta R, et al. Swallowing dysfunction in 101 patients with nephropathic cystinosis: benefit of long-term cysteamine therapy. Medicine (Baltimore). 2005;84(3):137–146.
  • Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expert Opin Pharmacother. 2004;5(11):2255–2262.
  • Kleta R, Bernardini I, Ueda M, et al. Long-term follow-up of well-treated nephropathic cystinosis patients. J Pediatr. 2004;145(4):555–560.
  • Rega LR, Polishchuk E, Montefusco S, et al. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells. Kidney Int. 2016;89(4):862–873.
  • Santer R, Steinmann B, Schaub J. Fanconi-Bickel syndrome–a congenital defect of facilitative glucose transport. Curr Mol Med. 2002;2(2):213–227.
  • Santer R, Groth S, Kinner M, et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet. 2002;110(1):21–29.
  • Santer R, Schneppenheim R, Suter D, et al. Fanconi-Bickel syndrome–the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr. 1998;157(10):783–797.
  • Maiorana A, Malamisura M, Emma F, et al. Early effect of NTBC on renal tubular dysfunction in hereditary tyrosinemia type 1. Mol Genet Metab. 2014;113(3):188–193.
  • Sun MS, Hattori S, Kubo S, et al. A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol. 2000;11(2):291–300.
  • Weinberg AG, Mize CE, Worthen HG. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr. 1976;88(3):434–438.
  • Santra S, Preece MA, Hulton SA, et al. Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis. 2008;31(3):399–402.
  • Bosch AM. Classical galactosaemia revisited. J Inherit Metab Dis. 2006;29(4):516–525.
  • Roberts EA, Sarkar B. Liver as a key organ in the supply, storage, and excretion of copper. Am J Clin Nutr. 2008;88(3):851S–4S.
  • Selvan C, Thukral A, Chakraborthy PP, et al. Refractory rickets due to Fanconi’s Syndrome secondary to Wilson’s disease. Indian J Endocrinol Metab. 2012;16(Suppl 2):S399–401.
  • Bouteldja N, Timson DJ. The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis. 2010;33(2):105–112.
  • Zhang X, Jefferson AB, Auethavekiat V, et al. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci U S A. 1995;92(11):4853–4856.
  • Levin-Iaina N, Dinour D. Renal disease with OCRL1 mutations: Dent-2 or lowe syndrome? J Pediatr Genet. 2012;1(1):3–5.
  • Lewis RA, Nussbaum RL, Brewer ED, et al. Lowe syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle (WA): University of Washington, Seattle; 1993.
  • Böckenhauer D, Bökenkamp A, Nuutinen M, et al. Novel OCRL mutations in patients with Dent-2 disease. J Pediatr Genet. 2012;1(1):15–23.
  • Gillooly DJ, Stenmark H. Cell biology. A lipid oils the endocytosis machine. Science (New York, NY). 2001;291(5506):993–994.
  • Choudhury R, Diao A, Zhang F, et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell. 2005;16(8):3467–3479.
  • Bokenkamp A, Ludwig M. The oculocerebrorenal syndrome of Lowe: an update. Pediatr Nephrol. 2016;31(12):2201–2212.
  • Sethi SK, Lunardi J, Kabra M, et al. Antenatal diagnosis of Lowe syndrome. Clin Exp Nephrol. 2010;14(3):296–297.
  • Grand T, L’Hoste S, Mordasini D, et al. Heterogeneity in the processing of CLCN5 mutants related to Dent disease. Hum Mutat. 2011;32(4):476–483.
  • Devuyst O, Thakker RV. Dent’s disease. Orphanet J Rare Dis. 2010;5:28.
  • Norden AG, Lapsley M, Igarashi T, et al. Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J Am Soc Nephrol. 2002;13(1):125–133.
  • Hichri H, Rendu J, Monnier N, et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat. 2011;32(4):379–388.
  • Recker F, Zaniew M, Bockenhauer D, et al. Characterization of 28 novel patients expands the mutational and phenotypic spectrum of Lowe syndrome. Pediatr Nephrol. 2015;30(6):931–943.
  • Lichter-Konecki U, Broman KW, Blau EB, et al. Genetic and physical mapping of the locus for autosomal dominant renal Fanconi syndrome, on chromosome 15q15.3. Am J Hum Genet. 2001;68(1):264–268.
  • Tieder M, Arie R, Modai D, et al. Elevated serum 1,25-dihydroxyvitamin D concentrations in siblings with primary Fanconi’s syndrome. N Engl J Med. 1988;319(13):845–849.
  • Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–192.
  • Schlingmann KP, Ruminska J, Kaufmann M, et al. Autosomal-recessive mutations in SLC34A1 encoding Sodium-Phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–614.
  • Klootwijk ED, Reichold M, Helip-Wooley A, et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. N Engl J Med. 2014;370(2):129–138.
  • Assmann N, Dettmer K, Simbuerger JM, et al. Renal Fanconi Syndrome is caused by a mistargeting-based mitochondriopathy. Cell Rep. 2016;15(7):1423–1429.
  • Balaban RS, Mandel LJ. Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am J Physiol. 1988;254(3 Pt 2):F407–F416.
  • Hamilton AJ, Bingham C, McDonald TJ, et al. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a beta cell phenotype. J Med Genet. 2014;51(3):165–169.
  • Emma F, Montini G, Salviati L, et al. Renal mitochondrial cytopathies. Int J Nephrol. 2011;2011:1–10.
  • Magnano L, Fernandez De Larrea C, Cibeira MT, et al. Acquired Fanconi syndrome secondary to monoclonal gammopathies: a case series from a single center. Clin Lymphoma Myeloma Leuk. 2013;13(5):614–618.
  • Saeki T, Nakajima A, Ito T, et al. Tubulointerstitial nephritis and Fanconi syndrome in a patient with primary Sjogren’s syndrome accompanied by antimitochondrial antibodies: a case report and review of the literature. Mod Rheumatol. 2016;4:1-4.
  • Rossi R, Kleta R, Ehrich JH. Renal involvement in children with malignancies. Pediatr Nephrol. 1999;13(2):153–162.
  • Kleta R, Blair SC, Bernardini I, et al. Keratopathy of multiple myeloma masquerading as corneal crystals of ocular cystinosis. Mayo Clin Proc. 2004;79(3):410–412.
  • Luciani A, Sirac C, Terryn S, et al. Impaired Lysosomal function underlies monoclonal light chain-associated renal Fanconi Syndrome. J Am Soc Nephrol. 2016;27(7):2049–2061.
  • Vignon M, Javaugue V, Alexander MP, et al. Current anti-myeloma therapies in renal manifestations of monoclonal light chain-associated Fanconi syndrome: a retrospective series of 49 patients. Leukemia. 2016. In press.
  • Miyata N, Steffen J, Johnson ME, et al. Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci U S A. 2014;111(40):14406–14411.
  • Aiyar RS, Bohnert M, Duvezin-Caubet S, et al. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nat Commun. 2014;5:5585.
  • Hall AM, Schuh CD. Mitochondria as therapeutic targets in acute kidney injury. Curr Opin Nephrol Hypertens. 2016;25(4):355–362.
  • Silva MF, Aires CC, Luis PB, et al. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis. 2008;31(2):205–216.
  • Portilla D, Dai G, McClure T, et al. Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int. 2002;62(4):1208–1218.
  • Kubo S, Sun M, Miyahara M, et al. Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proc Natl Acad Sci U S A. 1998;95(16):9552–9557.
  • Ivanova EA, van den Heuvel LP, Elmonem MA, et al. Altered mTOR signalling in nephropathic cystinosis. J Inherit Metab Dis. 2016;39(3):457–464.
  • Sansanwal P, Yen B, Gahl WA, et al. Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol. 2010;21(2):272–283.
  • Dodd KM, Tee AR. Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012;302(11):E1329–E1342.
  • Grahammer F, Ramakrishnan SK, Rinschen MM, et al. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. J Am Soc Nephrol. 2016. In press.
  • Klootwijk RD, Savelkoul PJ, Ciccone C, et al. Allele-specific silencing of the dominant disease allele in sialuria by RNA interference. Faseb J. 2008;22(11):3846–3852.
  • Li YF, Jing Y, Hao J, et al. MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell. 2013;4(11):813–819.
  • Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122(8):2884–2897.
  • Zhang A, Liu Y, Shen Y, et al. miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology. 2011;78(2):474 e13–9.
  • Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra18.
  • Endo F, Sun MS. Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis. 2002;25(3):227–234.
  • Thoene JG. A review of the role of enhanced apoptosis in the pathophysiology of cystinosis. Mol Genet Metab. 2007;92(4):292–298.
  • Rostami Yazdi M, Mrowietz U. Fumaric acid esters. Clin Dermatol. 2008;26(5):522–526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.