124
Views
3
CrossRef citations to date
0
Altmetric
Review

Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects

&
Pages 431-443 | Received 11 Feb 2017, Accepted 07 Apr 2017, Published online: 26 Apr 2017

References

  • Needham M, Mastaglia FL. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol. 2007;6:620–631.
  • Needham M, Mastaglia FL. Sporadic inclusion body myositis: a continuing puzzle. NMD. 2008;18:6–16.
  • Askanas V, Engel WK, Nogalska A. Sporadic inclusion-body myositis: a degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta. 2015;1852:633–643.
  • Cox FM, Titulaer MJ, Sont JK, et al. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain. 2011;134:3167–3175.
  • Lindberg C, Oldfors A. Prognosis and prognostic factors in sporadic inclusion body myositis. Acta Neurol Scand. 2012;125:353–358.
  • Allenbach Y, Benveniste O, Decostre V, et al. Quadriceps strength is a sensitive marker of disease progression in sporadic inclusion body myositis. NMD. 2012;22:980–986.
  • Benveniste O, Guiguet M, Freebody J, et al. Long-term observational study of sporadic inclusion body myositis. Brain. 2011;134:3176–3184.
  • Hogrel J-Y, Allenbach Y, Canal A, et al. Four-year longitudinal study of clinical and functional endpoints in sporadic inclusion body myositis: implications for therapeutic trials. NMD. 2014;24:604–610.
  • Jackson CE, Barohn RJ, Gronseth G, et al. Inclusion body myositis functional rating scale: a reliable and valid measure of disease severity. Muscle Nerve. 2008;37:473–476.
  • Dimachkie MM, Barohn RJ. Inclusion body myositis. Curr Neurol Neurosci Rep. 2013;13:321.
  • Goodman BP, Liewluck T, Crum BA, et al. Camptocormia due to inclusion body myositis. J Clin Neuromuscul Dis. 2012;14:78–81.
  • Ma H, McEvoy KM, Milone M. Sporadic inclusion body myositis presenting with severe camptocormia. J Clin Neurosci. 2013;20:1628–1629.
  • Della Marca G, Sancricca C, Losurdo A, et al. Sleep disordered breathing in a cohort of patients with sporadic inclusion body myositis. Clin Neurophysiol. 2013;124:1615–1621.
  • Rodriguez Cruz PM, Needham M, Hollingsworth P, et al. Sleep disordered breathing and subclinical impairment of respiratory function are common in sporadic inclusion body myositis. NMD. 2014;24:1036–1041.
  • Lloyd TE, Christopher-Stine L, Pinal-Fernandez I, et al. Cytosolic 5ʹ-nucleotidase 1A as a target of circulating autoantibodies in autoimmune diseases. Arthritis Care Res (Hoboken). 2016;68:66–71.
  • Goyal NA, Cash TM, Alam U, et al. Seropositivity for NT5c1A antibody in sporadic inclusion body myositis predicts more severe motor, bulbar and respiratory involvement. J Neurol Neurosurg Psychiatry. 2016;87:373–378.
  • Lilleker JB, Rietveld A, Pye SR, et al. Cytosolic 5ʹ-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Ann Rheum Dis. 2017;76:862–868.
  • Tasca G, Monforte M, de Fino C, et al. Magnetic resonance imaging pattern recognition in sporadic inclusion-body myositis. Muscle Nerve. 2015;52:956–962.
  • Rodriguez Cruz PM, Luo Y-B, Miller J, et al. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies. NMD. 2014;24:1025–1035.
  • Needham M, Mastaglia FL. Sporadic inclusion body myositis: a review of recent clinical advances and current approaches to diagnosis and treatment. Clin Neurophysiol. 2016;127:1764–1773.
  • Hilton-Jones D, Miller A, Parton M, et al. Inclusion body myositis: MRC centre for neuromuscular diseases, IBM workshop, London, 13 June 2008. NMD. 2010;20:142–147.
  • Benveniste O, Hilton-Jones D. International workshop on inclusion body myositis held at the Institute of Myology, Paris, on 29 May 2009. NMD. 2010;20:414–421.
  • Griggs RC, Askanas V, DiMauro S, et al. Inclusion body myositis and myopathies. Ann Neurol. 1995;38:705–713.
  • Rose MR; Group EIW. 188th ENMC international workshop: inclusion body myositis, 2-4 December 2011, Naarden, The Netherlands. NMD. 2013;23:1044–1055.
  • Chahin N, Engel AG. Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology. 2008;70:418–424.
  • Brady S, Squier W, Hilton-Jones D. Clinical assessment determines the diagnosis of inclusion body myositis independently of pathological features. J Neurol Neurosurg Psychiatry. 2013;84:1240–1246.
  • Lloyd TE, Mammen AL, Amato AA, et al. Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology. 2014;83:426–433.
  • Needham M, Mastaglia FL, Garlepp MJ. Genetics of inclusion-body myositis. Muscle Nerve. 2007;35:549–561.
  • Broccolini A, Mirabella M. Hereditary inclusion-body myopathies. Biochim Biophys Acta. 2015;1852:644–650.
  • Garlepp MJ, Laing B, Zilko PJ, et al. HLA associations with inclusion body myositis. Clin Exp Immunol. 1994;98:40–45.
  • Mastaglia FL, Needham M, Scott A, et al. Sporadic inclusion body myositis: HLA-DRB1 allele interactions influence disease risk and clinical phenotype. NMD. 2009;19:763–765.
  • Rojana-Udomsart A, Mitrpant C, James I, et al. Analysis of HLA-DRB3 alleles and supertypical genotypes in the MHC Class II region in sporadic inclusion body myositis. J Neuroimmunol. 2013;254:174–177.
  • Scott AP, Laing NG, Mastaglia F, et al. Recombination mapping of the susceptibility region for sporadic inclusion body myositis within the major histocompatibility complex. J Neuroimmunol. 2011;235:77–83.
  • Needham M, Hooper A, James I, et al. Apolipoprotein epsilon alleles in sporadic inclusion body myositis: a reappraisal. NMD. 2008;18:150–152.
  • Mastaglia FL, Rojana-Udomsart A, James I, et al. Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. NMD. 2013;23:969–974.
  • Gang Q, Bettencourt C, Machado PM, et al. The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiol Aging. 2015;36:1766.e1-1766.e3.
  • Weihl CC, Baloh RH, Lee Y, et al. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. NMD. 2015;25:289–296.
  • Gang Q, Bettencourt C, Machado PM, et al. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiol Aging. 2016;47:218.e1-.e9.
  • Cai H, Yabe I, Sato K, et al. Clinical, pathological, and genetic mutation analysis of sporadic inclusion body myositis in Japanese people. J Neurol. 2012;259:1913–1922.
  • Amemiya K, Granger RP, Dalakas MC. Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain. 2000;123(Pt 10):2030–2039.
  • Muntzing K, Lindberg C, Moslemi AR, et al. Inclusion body myositis: clonal expansions of muscle-infiltrating T cells persist over time. Scand J Immunol. 2003;58:195–200.
  • Creus KK, De Paepe B, Werbrouck BF, et al. Distribution of the NF-kappaB complex in the inflammatory exudates characterizing the idiopathic inflammatory myopathies. Ann N Y Acad Sci. 2009;1173:370–377.
  • de Paepe B, de Bleecker JL. The nonnecrotic invaded muscle fibers of polymyositis and sporadic inclusion body myositis: on the interplay of chemokines and stress proteins. Neurosci Lett. 2013;535:18–23.
  • Tateyama M, Fujihara K, Misu T, et al. CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19+ nonnecrotic muscle fibers in inclusion body myositis. J Neurol Sci. 2009;279:47–52.
  • Bradshaw EM, Orihuela A, McArdel SL, et al. A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol. 2007;178:547–556.
  • Greenberg SA, Bradshaw EM, Pinkus JL, et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology. 2005;65:1782–1787.
  • Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopathies. Neurology. 2002;59:1170–1182.
  • Raju R, Dalakas MC. Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain. 2005;128:1887–1896.
  • Dalakas MC, Illa I, Gallardo E, et al. Inclusion body myositis and paraproteinemia: incidence and immunopathologic correlations. Ann Neurol. 1997;41:100–104.
  • Ray A, Amato AA, Bradshaw EM, et al. Autoantibodies produced at the site of tissue damage provide evidence of humoral autoimmunity in inclusion body myositis. PLoS One. 2012;7:e46709.
  • Salajegheh M, Lam T, Greenberg SA. Autoantibodies against a 43 KDa muscle protein in inclusion body myositis. PLoS One. 2011;6:e20266.
  • Larman HB, Salajegheh M, Nazareno R, et al. Cytosolic 5ʹ-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol. 2013;73:408–418.
  • Pluk H, van Hoeve BJA, van Dooren SHJ, et al. Autoantibodies to cytosolic 5ʹ-nucleotidase 1A in inclusion body myositis. Ann Neurol. 2013;73:397–407.
  • Rojana-Udomsart A, Bundell C, James I, et al. Frequency of autoantibodies and correlation with HLA-DRB1 genotype in sporadic inclusion body myositis (s-IBM): a population control study. J Neuroimmunol. 2012;249:66–70.
  • Rojana-Udomsart A, Needham M, Luo YB, et al. The association of sporadic inclusion body myositis and Sjogren’s syndrome in carriers of HLA-DR3 and the 8.1 MHC ancestral haplotype. Clin Neurol Neurosurg. 2011;113:559–563.
  • Misterska-Skora M, Sebastian A, Dziegiel P, et al. Inclusion body myositis associated with Sjogren’s syndrome. Rheumatol Int. 2013;33:3083–3086.
  • Derk CT, Vivino FB, Kenyon L, et al. Inclusion body myositis in connective tissue disorders: case report and review of the literature. Clin Rheumatol. 2003;22:324–328.
  • Bielsa S, Madronero AB, Grau JM, et al. [Inclusion-body myositis associated with systemic sclerosis]. Miositis Con Cuerpos De Inclusion Asociada a Esclerosis Sistemica. Med Clin (Barc). 2007;128:278.
  • Clerici AM, Bono G, Delodovici ML, et al. A rare association of early-onset inclusion body myositis, rheumatoid arthritis and autoimmune thyroiditis: a case report and literature review. Funct Neurol. 2013;28:127–132.
  • Hama K, Miwa H, Nishino I, et al. [Inclusion body myositis associated with chronic thyroiditis, Sjogren’s syndrome and autoimmune cholangitis]. No to shinkei = Brain Nerve. 2004;56:503–507.
  • Dalakas MC, Illa I. Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells. Ann Neurol. 1995;37:806–810.
  • Beck EH, Amato AA, Greenberg SA. Inclusion body myositis and chronic lymphocytic leukemia: a case series. Neurology. 2014;83:98–99.
  • Cupler EJ, Leon-Monzon M, Miller J, et al. Inclusion body myositis in HIV-1 and HTLV-1 infected patients. Brain. 1996;119(Pt 6):1887–1893.
  • Ozden S, Gessain A, Gout O, et al. Sporadic inclusion body myositis in a patient with human T cell leukemia virus type 1-associated myelopathy. Clin Infect Dis. 2001;32:510–514.
  • Dalakas MC, Rakocevic G, Shatunov A, et al. Inclusion body myositis with human immunodeficiency virus infection: four cases with clonal expansion of viral-specific T cells. Ann Neurol. 2007;61:466–475.
  • Hiniker A, Daniels BH, Margeta M. T-cell-mediated inflammatory myopathies in HIV-positive individuals: a histologic study of 19 cases. J Neuropathol Exp Neurol. 2016;75:239–245.
  • Alverne ARSM, Marie SKN, Levy-Neto M, et al. [Inclusion body myositis: series of 30 cases from a Brazilian tertiary center]. Miosite de corpos de inclusao: serie de 30 casos de um centro terciario brasileiro. Acta Reumatol Port. 2013;38:179–185.
  • Uruha A, Noguchi S, Hayashi YK, et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology. 2016;86:211–217.
  • Chou SM. Inclusion body myositis: a chronic persistent mumps myositis? Hum Pathol. 1986;17:765–777.
  • Christen U, Von Herrath MG. Initiation of autoimmunity. Curr Opin Immunol. 2004;16:759–767.
  • Dalakas MC, Schmidt J. Viruses in IBM: hit-and-run, hide and persist, or irrelevant? Neurology. 2016;86:204–205.
  • de Paepe B, Creus KK, de Bleecker JL. Chemokine profile of different inflammatory myopathies reflects humoral versus cytotoxic immune responses. Ann N Y Acad Sci. 2007;1109:441–453.
  • Schmidt J, Barthel K, Wrede A, et al. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain. 2008;131:1228–1240.
  • de Paepe B, Zschuntzsch J. Scanning for therapeutic targets within the cytokine network of idiopathic inflammatory myopathies. Int J Mol Sci. 2015;16:18683–18713.
  • Broussard SR, McCusker RH, Novakofski JE, et al. IL-1beta impairs insulin-like growth factor i-induced differentiation and downstream activation signals of the insulin-like growth factor i receptor in myoblasts. J Immunol. 2004;172:7713–7720.
  • Li YP, Chen Y, John J, et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. Faseb J. 2005;19:362–370.
  • Dalakas MC. Molecular immunology and genetics of inflammatory muscle diseases. Arch Neurol. 1998;55:1509–1512.
  • Dec E, Rana P, Katheria V, et al. Cytokine profiling in patients with VCP-associated disease. Clin Transl Sci. 2014;7:29–32.
  • Askanas V, Engel WK. Sporadic inclusion-body myositis and its similarities to Alzheimer disease brain. Recent approaches to diagnosis and pathogenesis, and relation to aging. Scand J Rheumatol. 1998;27:389–405.
  • Askanas V, Engel WK. Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-beta42 oligomers and phosphorylated tau. Presse Med (Paris, France: 1983). 2011;40:e219–35.
  • Buxbaum JN. Treatment and prevention of the amyloidoses: can the lessons learned be applied to sporadic inclusion-body myositis? Neurology. 2006;66:S110–3.
  • Sarkozi E, Askanas V, Johnson SA, et al. Beta-amyloid precursor protein mRNA is increased in inclusion-body myositis muscle. Neuroreport. 1993;4:815–818.
  • Greenberg SA. Theories of the pathogenesis of inclusion body myositis. Curr Rheumatol Rep. 2010;12:221–228.
  • Shtifman A, Ward CW, Laver DR, et al. Amyloid-beta protein impairs Ca2+ release and contractility in skeletal muscle. Neurobiol Aging. 2010;31:2080–2090.
  • Franciosi S, Choi HB, Kim SU, et al. IL-8 enhancement of amyloid-beta (Abeta 1-42)-induced expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol. 2005;159:66–74.
  • Kitazawa M, Trinh DN, LaFerla FM. Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol. 2008;64:15–24.
  • Schmidt J, Barthel K, Zschuntzsch J, et al. Nitric oxide stress in sporadic inclusion body myositis muscle fibres: inhibition of inducible nitric oxide synthase prevents interleukin-1beta-induced accumulation of beta-amyloid and cell death. Brain. 2012;135:1102–1114.
  • Baron P, Galimberti D, Meda L, et al. Synergistic effect of beta-amyloid protein and interferon gamma on nitric oxide production by C2C12 muscle cells. Brain. 2000;123(Pt 2):374–379.
  • Gotoh T, Mori M. Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol. 2006;26:1439–1446.
  • Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455–462.
  • Rayavarapu S, Coley W, Nagaraju K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr Rheumatol Rep. 2012;14:238–243.
  • Nogalska A, D’Agostino C, Engel WK, et al. Activation of the unfolded protein response in sporadic inclusion-body myositis but not in hereditary GNE inclusion-body myopathy. J Neuropathol Exp Neurol. 2015;74:538–546.
  • Vattemi G, Engel WK, McFerrin J, et al. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am J Pathol. 2004;164:1–7.
  • Nagaraju K, Casciola-Rosen L, Lundberg I, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 2005;52:1824–1835.
  • Freret M, Drouot L, Obry A, et al. Overexpression of MHC class I in muscle of lymphocyte-deficient mice causes a severe myopathy with induction of the unfolded protein response. Am J Pathol. 2013;183:893–904.
  • Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl). 2008;86:1113–1126.
  • Dogra C, Changotra H, Mohan S, et al. Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J Biol Chem. 2006;281:10327–10336.
  • Langen RC, Schols AM, Kelders MC, et al. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. Faseb J. 2001;15:1169–1180.
  • Di Marco S, Mazroui R, Dallaire P, et al. NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol Cell Biol. 2005;25:6533–6545.
  • Nogalska A, Wojcik S, Engel WK, et al. Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis. Exp Neurol. 2007;204:610–618.
  • Nogalska A, D’Agostino C, Terracciano C, et al. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol. 2010;177:1377–1387.
  • Lunemann JD, Schmidt J, Schmid D, et al. Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol. 2007;61:476–483.
  • Lunemann JD, Schmidt J, Dalakas MC, et al. Macroautophagy as a pathomechanism in sporadic inclusion body myositis. Autophagy. 2007;3:384–386.
  • Keller CW, Fokken C, Turville SG, et al. TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J Biol Chem. 2011;286:3970–3980.
  • Nogalska A, Terracciano C, D’Agostino C, et al. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol. 2009;118:407–413.
  • Brady S, Squier W, Sewry C, et al. A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open. 2014;4:e004552.
  • Dubourg O, Wanschitz J, Maisonobe T, et al. Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta Myol. 2011;30:103–108.
  • Salajegheh M, Pinkus JL, Taylor JP, et al. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve. 2009;40:19–31.
  • Weihl CC, Temiz P, Miller SE, et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008;79:1186–1189.
  • Chou SM. Myxovirus-like structures and accompanying nuclear changes in chronic polymyositis. Arch Pathol. 1968;86:649–658.
  • Greenberg SA, Pinkus JL, Amato AA. Nuclear membrane proteins are present within rimmed vacuoles in inclusion-body myositis. Muscle Nerve. 2006;34:406–416.
  • Nakano S, Shinde A, Fujita K, et al. Histone H1 is released from myonuclei and present in rimmed vacuoles with DNA in inclusion body myositis. Neuromuscul Disord. 2008;18:27–33.
  • Cortese A, Plagnol V, Brady S, et al. Widespread RNA metabolism impairment in sporadic inclusion body myositis TDP43-proteinopathy. Neurobiol Aging. 2014;35:1491–1498.
  • Bruunsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am. 2003;23:15–39.
  • Rygiel KA, Miller J, Grady JP, et al. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol Appl Neurobiol. 2015;41:288–303.
  • Lindgren U, Roos S, Hedberg Oldfors C, et al. Mitochondrial pathology in inclusion body myositis. NMD. 2015;25:281–288.
  • Joshi PR, Vetterke M, Hauburger A, et al. Functional relevance of mitochondrial abnormalities in sporadic inclusion body myositis. J Clin Neurosci. 2014;21:1959–1963.
  • Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol. 2013;20:202–215.
  • Boncompagni S, Moussa CEH, Levy E, et al. Mitochondrial dysfunction in skeletal muscle of amyloid precursor protein-overexpressing mice. J Biol Chem. 2012;287:20534–20544.
  • Morosetti R, Broccolini A, Sancricca C, et al. Increased aging in primary muscle cultures of sporadic inclusion-body myositis. Neurobiol Aging. 2010;31:1205–1214.
  • Morosetti R, Gliubizzi C, Sancricca C, et al. TWEAK in inclusion-body myositis muscle: possible pathogenic role of a cytokine inhibiting myogenesis. Am J Pathol. 2012;180:1603–1613.
  • Zschuntzsch J, Voss J, Creus K, et al. Provision of an explanation for the inefficacy of immunotherapy in sporadic inclusion body myositis: quantitative assessment of inflammation and beta-amyloid in the muscle. Arthritis Rheum. 2012;64:4094–4103.
  • Kosmidis ML, Alexopoulos H, Tzioufas AG, et al. The effect of anakinra, an IL1 receptor antagonist, in patients with sporadic inclusion body myositis (sIBM): a small pilot study. J Neurol Sci. 2013;334:123–125.
  • Dalakas MC, Rakocevic G, Schmidt J, et al. Effect of alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis. Brain. 2009;132:1536–1544.
  • Schmidt K, Kleinschnitz K, Rakocevic G, et al. Molecular treatment effects of alemtuzumab in skeletal muscles of patients with IBM. BMC Neurol. 2016;16:48.
  • Saperstein DS, Levine TD. Interim analysis of a pilot trial of natalizumab in inclusion body myositis. Neurology. 2015;86:161.
  • Dobloug C, Walle-Hansen R, Gran JT, et al. Long-term follow-up of sporadic inclusion body myositis treated with intravenous immunoglobulin: a retrospective study of 16 patients. Clin Exp Rheumatol. 2012;30:838–842.
  • Pars K, Garde N, Skripuletz T, et al. Subcutaneous immunoglobulin treatment of inclusion-body myositis stabilizes dysphagia. Muscle Nerve. 2013;48:838–839.
  • Cherin P, Delain J-C, de Jaeger C, et al. Subcutaneous immunoglobulin use in inclusion body myositis: a review of 6 cases. Case Rep Neurol. 2015;7:227–232.
  • Recher M, Sahrbacher U, Bremer J, et al. Treatment of inclusion body myositis: is low-dose intravenous immunoglobulin the solution? Rheumatol Int. 2012;32:469–472.
  • Kierdaszuk B, Kaminska A. Inclusion body myositis: therapeutic approaches. A case report. Neurologia I Neurochirurgia Polska. 2011;45:68–73.
  • Sancricca C, Mora M, Ricci E, et al. Pilot trial of simvastatin in the treatment of sporadic inclusion-body myositis. Neurol Sci. 2011;32:841–847.
  • Machado P, Miller A, Herbelin L, et al. Safety and tolerability of arimoclomol in patients with sporadic inclusion body myositis: a randomised, double-blind, placebo-controlled, phase IIA proof-of-concept trial. Ann Rheum Dis. 2013;72:164.
  • Ahmed M, Machado PM, Miller A, et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med. 2016;8:331ra41.
  • Amato AA, Sivakumar K, Goyal N, et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology. 2014;83:2239–2246.
  • Mendell JR, Rodino-Klapac L, Sahenk Z, et al. Gene therapy for muscular dystrophy: lessons learned and path forward. Neurosci Lett. 2012;527:90–99.
  • Terracciano C, Nogalska A, Engel WK, et al. In AbetaPP-overexpressing cultured human muscle fibers proteasome inhibition enhances phosphorylation of AbetaPP751 and GSK3beta activation: effects mitigated by lithium and apparently relevant to sporadic inclusion-body myositis. J Neurochem. 2010;112:389–396.
  • Dimachkie MM, Barohn RJ. Inclusion body myositis. Neurol Clin. 2014;32:629–46, vii.
  • Malandraki GA, Kaufman A, Hind J, et al. The effects of lingual intervention in a patient with inclusion body myositis and Sjogren’s syndrome: a longitudinal case study. Arch Phys Med Rehabil. 2012;93:1469–1475.
  • Oh TH, Brumfield KA, Hoskin TL, et al. Dysphagia in inclusion body myositis: clinical features, management, and clinical outcome. Am J Phys Med Rehabil. 2008;87:883–889.
  • Johnson LG, Edwards DJ, Walters S, et al. The effectiveness of an individualized, home-based functional exercise program for patients with sporadic inclusion body myositis. Clin Neuromuscular Dis. 2007;8:187–194.
  • Johnson LG, Collier KE, Edwards DJ, et al. Improvement in aerobic capacity after an exercise program in sporadic inclusion body myositis. J Clin Neuromuscul Dis. 2009;10:178–184.
  • Alexanderson H. Exercise in inflammatory myopathies, including inclusion body myositis. Curr Rheumatol Rep. 2012;14:244–251.
  • Alexanderson H, Lundberg IE. Exercise as a therapeutic modality in patients with idiopathic inflammatory myopathies. Curr Opin Rheumatol. 2012;24:201–207.
  • Alemo Munters L, Alexanderson H, Crofford LJ, et al. New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr Rheumatol Rep. 2014;16:429.
  • Alexanderson H. Physical exercise as a treatment for adult and juvenile myositis. J Intern Med. 2016;280:75–96.
  • Gualano B, Neves M Jr., Lima FR, et al. Resistance training with vascular occlusion in inclusion body myositis: a case study. Med Sci Sports Exerc. 2010;42:250–254.
  • Gualano B, Ugrinowitsch C, Neves M Jr., et al. Vascular occlusion training for inclusion body myositis: a novel therapeutic approach. J Vis Exp. 2010 Jun 5;(40). pii: 1894. doi:10.3791/1894.
  • Pell M, Saththasivam P, Stephens PL, et al. Therapeutic effect of hyperbaric oxygen on inclusion body myositis. Undersea Hyperb Med. 2012;39:1111–1114.
  • Nogalska A, D’Agostino C, Engel WK, et al. Sodium phenylbutyrate reverses lysosomal dysfunction and decreases amyloid-beta42 in an in vitro-model of inclusion-body myositis. Neurobiol Dis. 2014;65:93–101.
  • Diomede L, Rigacci S, Romeo M, et al. Oleuropein aglycone protects transgenic C. elegans strains expressing Abeta42 by reducing plaque load and motor deficit. PLoS One. 2013;8:e58893.
  • Beckett TL, Studzinski CM, Keller JN, et al. A ketogenic diet improves motor performance but does not affect beta-amyloid levels in a mouse model of Alzheimer’s disease. Brain Res. 2013;1505:61–67.
  • Beckett TL, Niedowicz DM, Studzinski CM, et al. Effects of nonsteroidal anti-inflammatory drugs on amyloid-beta pathology in mouse skeletal muscle. Neurobiol Dis. 2010;39:449–456.
  • Kitazawa M, Vasilevko V, Cribbs DH, et al. Immunization with amyloid-beta attenuates inclusion body myositis-like myopathology and motor impairment in a transgenic mouse model. J Neurosci. 2009;29:6132–6141.
  • Toepfer M, Fischer P, Muller-Felber W, et al. Correlation between the number of vacuolated amyloid-positive fibres and the duration and stage of disease in inclusion body myositis. Eur J Neurol. 1995;2:31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.