163
Views
1
CrossRef citations to date
0
Altmetric
Review

Diagnostic methods and emerging treatments for adult neuronal ceroid lipofuscinoses (Kufs disease)

ORCID Icon, , , & ORCID Icon
Pages 487-501 | Received 28 Feb 2017, Accepted 27 Apr 2017, Published online: 10 May 2017

References

  • Mole SE, Williams RE, Goebel HH. The neuronal ceroid lipofuscinoses (Batten Disease). 2nd ed. Oxford (UK): Oxford University Press; 2011.
  • Haltia M. The neuronal ceroid-lipofuscinoses: from past to present. Biochim Biophys Acta. 2006;1762:850–856.
  • Haltia M, Goebel HH. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta. 2013;1832:1795–1800.
  • Williams RE. NCL incidence and prevalence data. In: Mole SE, Williams RE, Goebel HH, eds. The neuronal ceroid lipofuscinoses (batten disease). 2nd ed. Oxford (UK): Oxford University Press; 2011. p. 361–365.
  • Santorelli FM, Garavaglia B, Cardona F, et al. Molecular epidemiology of childhood neuronal ceroid-lipofuscinosis in Italy. Orphanet J Rare Dis. 2013;8:19.
  • Sadzot B, Reznik M, Arrese-Estrada JE, et al. Familial Kufs’ disease presenting as a progressive myoclonic epilepsy. J Neurol. 2000;247:447–454.
  • Zeman W. The neuronal ceroid-lipofuscinoses. In: Zimmerman H, eds. Progress in Neuropathology. New York (US): Grune and Stratton; 1976. p. 203–223.
  • Schulz A, Kohlschütter A, Mink J, et al. NCL diseases – clinical perspectives. Biochim Biophys Acta. 2013;1832:1801–1806.
  • Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology. 2012;79:183–191.
  • Kufs H. Über eine spätform der amaurotischen Idiotie and ihre heredofamiliaren Grundlagen. Z Ges Neurol Psychiatrie. 1925;95:168–188.
  • Kollmann K, Uusi-Rauva K, Scifo E, et al. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013;1832:1866–1881.
  • Cárcel-Trullols J, Kovács AD, Pearce DA. Cell biology of the NCL proteins: what they do and don’t do. Biochim Biophys Acta. 2015;1852:2242–2255.
  • Mole SE. NCL Mutation and Patient Database [online]. [ cited 2017 Feb 27]. Available from: http://www.ucl.ac.uk/ncl/mutation.shtml
  • Zeman W, Dyken P. Neuronal ceroid-lipofuscinosis (Batten’s disease): relationship to amaurotic family idiocy? Pediatrics. 1969;44:570–583.
  • Carpenter S, Karpati G, Andermann F, et al. The ultrastructural characteristics of the abnormal cytosomes in batten-kufs’ disease. Brain. 1977;100:137–156.
  • Berkovic SF, Carpenter S, Andermann F, et al. Kufs’ disease: a critical reappraisal. Brain. 1988;111:27–62.
  • Boehme DH, Cottrell JC, Leonberg SC, et al. A dominant form of neuronal ceroid-lipofuscinosis. Brain. 1971;94:745–760.
  • Nosková L, Stránecký V, Hartmannová H, et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet. 2011;89:241–252. Erratum in: Am J Hum Genet 2011;89:589
  • Smith KR, Damiano J, Franceschetti S, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90:1102–1107.
  • Smith KR, Dahl HH, Canafoglia L, et al. Cathepsin F mutations cause type B kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22:1417–1423.
  • Arsov T, Smith KR, Damiano J, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88:566–573.
  • van Diggelen OP, Thobois S, Tilikete C, et al. Adult neuronal ceroid lipofuscinosis with palmitoyl-protein thioesterase deficiency: first adult-onset patients of a childhood disease. Ann Neurol. 2001;50:269–272.
  • Mancini C, Nassani S, Guo Y, et al. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations. J Neurol. 2015;262:173–178.
  • Andrade DM, Paton T, Turnbull J, et al. Mutation of the CLN6 gene in teenage-onset progressive myoclonus epilepsy. Pediatr Neurol. 2012;47:205–208.
  • Wheeler RB, Sharp JD, Schultz RA, et al. The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am J Hum Genet. 2002;70:537–542.
  • Gao H, Boustany RM, Espinola JA, et al. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2002;70:324–335.
  • Morgan JP, Magee H, Wong A, et al. A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease. Plos One. 2013;8:e78694.
  • Palmer DN, Neverman NJ, Chen JZ, et al. Recent studies of ovine neuronal ceroid lipofuscinoses from BARN, the batten animal research network. Biochim Biophys Acta. 2015;1852:2279–2286.
  • Thelen M, Damme M, Schweizer M, et al. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. Plos One. 2012;7:e35493.
  • Berkovic SF, Andermann F, Andermann E, et al. Kufs disease: clinical features and forms. Am J Med Genet Suppl. 1988;5:105–109.
  • Canafoglia L, Gilioli I, Invernizzi F, et al. Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations. Neurology. 2015;85:316–324.
  • Canafoglia L, Morbin M, Scaioli V, et al. Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia. 2014;55:e56–e59.
  • Peters J, Rittger A, Weisner R, et al. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease. Biochem Biophys Res Commun. 2015;457:334–340.
  • Jerič B, Dolenc I, Mihelič M, et al. N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions. Biochim Biophys Acta. 2013;1833:2254–2266.
  • Di Fabio R, Moro F, Pestillo L, et al. Pseudo-dominant inheritance of a novel CTSF mutation associated with type B Kufs disease. Neurology. 2014;83:1769–1770.
  • Bras J, Djaldetti R, Alves AM, et al. Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer’s disease identifies a homozygous CTSF mutation. Neurobiol Aging. 2016;46:236.e1-6.
  • van der Zee J, Mariën P, Crols R, et al. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurol Genet. 2016;2:e102.
  • Di Fabio R, Colonnese C, Santorelli FM, et al. Brain imaging in Kufs disease type B: case reports. BMC Neurol. 2015;15:102.
  • Ferrer I, Arbizu T, Peña J, et al. A golgi and ultrastructural study of a dominant form of Kufs’ disease. J Neurol. 1980;222:183–190.
  • Josephson SA, Schmidt RE, Millsap P, et al. Autosomal dominant Kufs’ disease: a cause of early onset dementia. J Neurol Sci. 2001;188:51–60.
  • Nijssen PC, Ceuterick C, van Diggelen OP, et al. Autosomal dominant adult neuronal ceroid lipofuscinosis: a novel form of NCL with granular osmiophilic deposits without palmitoyl protein thioesterase 1 deficiency. Brain Pathol. 2003;13:574–581.
  • Burneo JG, Arnold T, Palmer CA, et al. Adult-onset neuronal ceroid lipofuscinosis (Kufs disease) with autosomal dominant inheritance in Alabama. Epilepsia. 2003;44:841–846.
  • Benitez BA, Alvarado D, Cai Y, et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. Plos One. 2011;6:e26741.
  • Velinov M, Dolzhanskaya N, Gonzalez M, et al. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 other families. Plos One. 2012;7:e29729. Erratum in: PLoS One 2012;7
  • Cadieux-Dion M, Andermann E, Lachance-Touchette P, et al. Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease. Clin Genet. 2013;83:571–575.
  • Moro F, Gismondi F, Pezzini F, et al. Clinical, ultrastructural, and molecular studies in a patient with Kufs disease. Neurol Sci. 2014;35:605–607.
  • Burgoyne RD, Morgan A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol. 2015;40:153–159.
  • Benitez BA, Cairns NJ, Schmidt RE, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73.
  • Almeida MR, Macário MC, Ramos L, et al. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging. 2016;41:200.e1-5.
  • Tanaka Y, Suzuki G, Matsuwaki T, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26:969–988.
  • Ramadan H, Al-Din AS, Ismail A, et al. Adult neuronal ceroid lipofuscinosis caused by deficiency in palmitoyl protein thioesterase 1. Neurology. 2007;68:387–388.
  • Santavuori P, Haltia M, Rapola J. Infantile type of so-called neuronal ceroid lipofuscinosis. Dev Med Child Neurol. 1974;16:644–653.
  • Simonati A, Tessa A, Bernardina BD, et al. Variant late infantile neuronal ceroid lipofuscinosis because of CLN1 mutations. Pediatr Neurol. 2009;40:271–276.
  • Xin W, Mullen TE, Kiely R, et al. CLN5 mutations are frequent in juvenile and late-onset non-Finnish patients with NCL. Neurology. 2010;74:565–571.
  • Walkley SU. Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc London B Biol Sci. 2003;358:893–904.
  • Goebel HH, Braak H. Adult neuronal ceroid-lipofuscinosis. Clin Neuropathol. 1989;8:109–119.
  • Gille M, Brucher JM, Indekeu P, et al. Maladie de Kufs avec leucoencéphalopathie. Rev Neurol (Paris). 1995;151:392–397.
  • Anderson GW, Goebel HH, Simonati A. Human pathology in NCL. Biochim Biophys Acta. 2013;1832:1807–1826.
  • Gelot A, Maurage CA, Rodriguez D, et al. In vivo diagnosis of Kufs’ disease by extracerebral biopsies. Acta Neuropathol. 1998;96:102–108.
  • Lewandowska E, Lipczyńska-Łojkowska W, Modzelewska J, et al. Kufs’ disease: diagnostic difficulties in the examination of extracerebral biopsies. Folia Neuropathol. 2009;47:259–267.
  • Pasquinelli G, Cenacchi G, Piane EL, et al. The problematic issue of Kufs disease diagnosis as performed on rectal biopsies: a case report. Ultrastruct Pathol. 2004;28:43–48.
  • Radke J, Stenzel W, Goebel HH. Human NCL neuropathology. Biochim Biophys Acta. 2015;1852:2262–2266.
  • Berkovic SF, Staropoli JF, Carpenter S, et al. Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease). Neurology. 2016;87:579–584.
  • Wolfe LS, Palo J, Santavuori P, et al. Urinary sediment dolichols in the diagnosis of neuronal ceroid-lipofuscinosis. Ann Neurol. 1986;19:270–274.
  • Palmer DN. The relevance of the storage of subunit c of ATP synthase in different forms and models of Batten disease (NCLs). Biochim Biophys Acta. 2015;1852:2287–2291.
  • Tyynelä J, Palmer DN, Baumann M, et al. Storage of saposins A and D in infantile neuronal ceroid lipofuscinosis. FEBS Lett. 1993;330:8–12.
  • Lyly A, Von Schantz C, Heine C, et al. Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins. BMC Cell Biol. 2009;10:83.
  • Scifo E, Szwajda A, Dębski J, et al. Drafting the CLN3 protein interactome in SH-SY5Y human neuroblastoma cells: a label-free quantitative proteomics approach. J Proteome Res. 2013;12:2101–2115.
  • Minassian BA. The progressive myoclonus epilepsies. Prog Brain Res. 2014;213:113–122.
  • Platt FM. Sphingolipid lysosomal storage disorders. Nature. 2014;510:68–75.
  • Faller KM, Gutierrez-Quintana R, Mohammed A, et al. The neuronal ceroid lipofuscinoses: opportunities from model systems. Biochim Biophys Acta. 2015;1852:2267–2278.
  • Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull. 2012;88:43–57.
  • Cox TM. Innovative treatments for lysosomal diseases. Best Pract Res Clin Endocrinol Metab. 2015;29:275–311.
  • Geraets RD, Koh SY, Hastings ML, et al. Moving towards effective therapeutic strategies for neuronal ceroid lipofuscinosis. Orphanet J Rare Dis. 2016;11:40.
  • Re W, Ca J, Jw P, et al. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease. Exp Eye Res. 2016;146:276–282.
  • Katz ML, Coates JR, Sibigtroth CM, et al. Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). J Neurosci Res. 2014;92:1591–1598.
  • Schulz A, Specchio N, Gissen P, et al. Intracerebroventricular cerliponase alfa (BMN 190) in children with CLN2 disease: results from a phase 1/2, open-label, dose-escalation study. J Inherit Metab Dis. 2016;39:S51.
  • Levin SW, Baker EH, Zein WM, et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol. 2014;13:777–787.
  • Patterson MC, Mengel E, Vanier MT, et al. Stable or improved neurological manifestations during miglustat therapy in patients from the international disease registry for Niemann-Pick disease type C: an observational cohort study. Orphanet J Rare Dis. 2015;10:65.
  • Koike M, Shibata M, Waguri S, et al. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol. 2005;167:1713–1728.
  • Cao Y, Espinola JA, Fossale E, et al. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem. 2006;281:20483–20493.
  • Lui H, Zhang J, Makinson SR, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165:921–935.
  • Bosch ME, Kielian T. Neuroinflammatory paradigms in lysosomal storage diseases. Front Neurosci. 2015;9:417.
  • Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–783.
  • Mastrogiacomo A, Parsons SM, Zampighi GA, et al. Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science. 1994;263:981–982.
  • Henderson MX, Wirak GS, Zhang YQ, et al. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 2016;131:621–637.
  • Sanders SS, Martin DD, Butland SL, et al. Curation of the mammalian palmitoylome indicates a pivotal role for palmitoylation in diseases and disorders of the nervous system and cùancers. Plos Comput Biol. 2015;11:e1004405.
  • Aby E, Gumps K, Roth A, et al. Mutations in palmitoyl-protein thioesterase 1 alter exocytosis and endocytosis at synapses in Drosophila larvae. Fly (Austin). 2013;7:267–279.
  • Shorvon S, Perucca E, Engel J Jr. The treatment of epilepsy. 4th Edition ed. Oxford (UK): Wiley-Blackwell; 2015.
  • Malek N, Stewart W, Greene J. The progressive myoclonic epilepsies. Pract Neurol. 2015;15:164–171.
  • Donnelier J, Braun ST, Dolzhanskaya N, et al. Increased expression of the large conductance, calcium-activated K+ (BK) channel in adult-onset neuronal ceroid lipofuscinosis. Plos One. 2015;10:e0125205.
  • Chen X, McCue HV, Wong SQ, et al. Ethosuximide ameliorates neurodegenerative disease phenotypes by modulating DAF-16/FOXO target gene expression. Mol Neurodegener. 2015;10:51. Erratum in: Mol Neurodegener 2015;10:54.
  • Demily C, Sedel F. Psychiatric manifestations of treatable hereditary metabolic disorders in adults. Ann Gen Psychiatry. 2014;13:27.
  • Reif A, Schneider MF, Hoyer A, et al. Neuroleptic malignant syndrome in Kufs’ disease. J Neurol Neurosurg Psychiatry. 2003;74:385–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.