73
Views
0
CrossRef citations to date
0
Altmetric
Review

Mevalonate kinase deficiency: therapeutic targets, treatments, and outcomes

, , &
Pages 515-524 | Received 21 Feb 2017, Accepted 05 May 2017, Published online: 18 May 2017

References

  • Favier LA, Schulert GS. Mevalonate kinase deficiency: current perspectives. Appl Clin Genet. 2016;9:101–110.
  • Ter Haar NM, Jeyaratnam J, Lachmann HJ, et al. The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheumatol. 2016;68:2795–2805.
  • Drenth JP, Haagsma CJ, van der Meer JW. Hyperimmunoglobulinemia D and periodic fever syndrome. The clinical spectrum in a series of 50 patients. International Hyper-IgD Study Group. Medicine (Baltimore). 1994;73:133–144.
  • van der Hilst JC, Bodar EJ, Barron KS, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore). 2008;87:301–310.
  • Stabile A, Compagnone A, Napodano S, et al. Mevalonate kinase genotype in children with recurrent fevers and high serum IgD level. Rheumatol Int. 2013;33:3039–3042.
  • Balgobind B, Wittebol-Post D, Frenkel J. Retinitis pigmentosa in mevalonate kinase deficiency. J Inherit Metab Dis. 2005;28:1143–1145.
  • Kellner U, Stöhr H, Weinitz S, et al. Mevalonate kinase deficiency associated with ataxia and retinitis pigmentosa in two brothers with MVK gene mutations. Ophthalmic Genet. 2017;1–5.
  • Kallianidis AF, Ray A, Goudkade D, et al. Amyloid A amyloidosis secondary to hyper IgD syndrome and response to IL-1 blockage therapy. Neth J Med. 2016;74:43–46.
  • Yel S, Gunduz Z, Bastug F, et al. Amyloidosis in a child with hyperimmunoglobulinemia D syndrome. Iran J Kidney Dis. 2013;7:70–72.
  • Lane T, Loeffler JM, Rowczenio DM, et al. AA amyloidosis complicating the hereditary periodic fever syndromes. Arthritis Rheum. 2013;65:1116–1121.
  • Zhang S. Natural history of mevalonate kinase deficiency: a literature review. Pediatr Rheumatol Online J. 2016;14:30.
  • Haas D, Hoffmann GF. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J Rare Dis. 2006;1:13.
  • Jeyaratnam J, Ter Haar NM, de Sain-van der Velden MG, et al. Diagnostic value of urinary mevalonic acid excretion in patients with a clinical suspicion of mevalonate kinase deficiency (MKD). JIMD Rep. 2016;27:33–38.
  • Mulders-Manders CM, Simon A. Hyper-IgD syndrome/mevalonate kinase deficiency: what is new? Semin Immunopathol. 2015;37:371–376.
  • Overed-Sayer CL, Mosedale DE, Goodall M, et al. Measurement of human serum IgD levels. Curr Protoc Immunol. 2009:85:2.9B.1-2.9B.7.
  • Hoffmann G, Gibson KM, Brandt IK, et al. Mevalonic aciduria – an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med. 1986;314:1610–1614.
  • Jo EK, Kim JK, Shin DM, et al. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148–159.
  • Akula MK, Shi M, Jiang Z, et al. Control of the innate immune response by the mevalonate pathway. Nat Immunol. 2016;17:922–929.
  • van der Burgh R, Nijhuis L, Pervolaraki K, et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1β hypersecretion. J Biol Chem. 2014;289:5000–5012.
  • Frenkel J, Rijkers GT, Mandey SH, et al. Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 2002;46:2794–2803.
  • Mandey SH, Kuijk LM, Frenkel J, et al. A role for geranylgeranylation in interleukin-1beta secretion. Arthritis Rheum. 2006;54:3690–3695.
  • Drenth JP, Van Deuren M, van der Ven-Jongekrijg J, et al. Cytokine activation during attacks of the hyperimmunoglobulinemia D and periodic fever syndrome. Blood. 1995;85:3586–3593.
  • Meyer-Hoffert U. Neutrophil-derived serine proteases modulate innate immune responses. Front Biosci (Landmark Ed). 2009;14:3409–3418.
  • Weigert A, Jennewein C, Brüne B. The liaison between apoptotic cells and macrophages – the end programs the beginning. Biol Chem. 2009;390:379–390.
  • Stoffels M, Jongekrijg J, Remijn T, et al. TLR2/TLR4-dependent exaggerated cytokine production in hyperimmunoglobulinaemia D and periodic fever syndrome. Rheumatology (Oxford). 2015;54:363–368.
  • Fernandez-Ruiz I, Puchalska P, Narasimhulu CA, et al. Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading. J Lipid Res. 2016;57:574–586.
  • Benarroch EE. Brain cholesterol metabolism and neurologic disease. Neurology. 2008;71:1368–1373.
  • Bifulco M. Molecular mechanisms responsible for neuroinflammation and neurological impairments in mevalonate kinase deficiency. Mol Genet Metab Rep. 2015;3:42.
  • Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6:254–264.
  • Cartocci V, Servadio M, Trezza V, et al. Can cholesterol metabolism modulation affect brain function and behavior? J Cell Physiol. 2017;232:281–286.
  • Bae SH, Lee JN, Fitzky BU, et al. Cholesterol biosynthesis from lanosterol. Molecular cloning, tissue distribution, expression, chromosomal localization, and regulation of rat 7-dehydrocholesterol reductase, a Smith-Lemli-Opitz syndrome-related protein. J Biol Chem. 1999;274:14624–14631.
  • Hager EJ, Tse HM, Piganelli JD, et al. Deletion of a single mevalonate kinase (Mvk) allele yields a murine model of hyper-IgD syndrome. J Inherit Metab Dis. 2007;30:888–895.
  • Celsi F, Piscianz E, Romano M, et al. Knockdown of MVK does not lead to changes in NALP3 expression or activation. J Inflamm (Lond). 2015;12:7.
  • Simon A. Cholesterol metabolism and immunity. N Engl J Med. 2014 Nov;371(20):1933–1935.
  • Marcuzzi A, Pontillo A, De Leo L, et al. Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate kinase deficiency. Pediatr Res. 2008;64:177–182.
  • Marcuzzi A, Zanin V, Kleiner G, et al. Mouse model of mevalonate kinase deficiency: comparison of cytokine and chemokine profile with that of human patients. Pediatr Res. 2013;74:266–271.
  • Tricarico PM, Piscianz E, Monasta L, et al. Microglia activation and interaction with neuronal cells in a biochemical model of mevalonate kinase deficiency. Apoptosis. 2015;20:1048–1055.
  • Marcuzzi A, Piscianz E, Zweyer M, et al. Geranylgeraniol and neurological impairment: involvement of apoptosis and mitochondrial morphology. Int J Mol Sci. 2016;17:365.
  • Platt FM, Wassif C, Colaco A, et al. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet. 2014;15:173–194.
  • Houten SM, Schneiders MS, Wanders RJ, et al. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J Biol Chem. 2003;278:5736–5743.
  • Waterham HR. Inherited disorders of cholesterol biosynthesis. Clin Genet. 2002;61:393–403.
  • Houten SM, Koster J, Romeijn GJ, et al. Organization of the mevalonate kinase (MVK) gene and identification of novel mutations causing mevalonic aciduria and hyperimmunoglobulinaemia D and periodic fever syndrome. Eur J Hum Genet. 2001;9:253–259.
  • Muller AL, Freed DH. Basic and clinical observations of mevalonate depletion on the mevalonate signaling pathway. Curr Mol Pharmacol. 2017;10:6–12.
  • van der Burgh R, Pervolaraki K, Turkenburg M, et al. Unprenylated RhoA contributes to IL-1β hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity. J Biol Chem. 2014;289:27757–27765.
  • Henneman L, Schneiders MS, Turkenburg M, et al. Compromized geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency. J Inherit Metab Dis. 2010;33:625–632.
  • Agabiti SS, Liang Y, Wiemer AJ. Molecular mechanisms linking geranylgeranyl diphosphate synthase to cell survival and proliferation. Mol Membr Biol. 2016;33:1–11.
  • Jurczyluk J, Munoz MA, Skinner OP, et al. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases. Immunol Cell Biol. 2016;94:994–999.
  • Hashemi M, Hoshyar R, Ande SR, et al. Mevalonate cascade and its regulation in cholesterol metabolism in different tissues in health and disease. Curr Mol Pharmacol. 2017;10:13–26.
  • Bodar EJ, van der Hilst JC, Drenth JP, et al. Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med. 2005;63:260–264.
  • Marcuzzi A, Piscianz E, Valencic E, et al. To extinguish the fire from outside the cell or to shutdown the gas valve inside? Novel trends in anti-inflammatory therapies. Int J Mol Sci. 2015;16:21277–21293.
  • Liao P, Hemmerlin A, Bach TJ, et al. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv. 2016;34:697–713.
  • Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–120.
  • Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–418.
  • Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619–630.
  • Qian Y, Cao L, Guan T, et al. Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NF-kappaB, JNK and ERK signaling pathway. Pharm Biol. 2015;53:1124–1132.
  • Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124:35–46.
  • Lappano R, Recchia AG, De Francesco EM, et al. The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. Plos One. 2011;6:e16631.
  • Olsen BN, Schlesinger PH, Ory DS, et al. 25-Hydroxycholesterol increases the availability of cholesterol in phospholipid membranes. Biophys J. 2011;100:948–956.
  • Diczfalusy U. On the formation and possible biological role of 25-hydroxycholesterol. Biochimie. 2013;95:455–460.
  • Bauman DR, Bitmansour AD, McDonald JG, et al. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci USA. 2009;106:16764–16769.
  • Cyster JG, Dang EV, Reboldi A, et al. 25-Hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol. 2014;14:731–743.
  • Jang J, Park S, Jin Hur H, et al. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat Commun. 2016;7:13129.
  • Coward WR, Marei A, Yang A, et al. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes. J Immunol. 2006;176:5284–5292.
  • Bellosta S, Corsini A. Statin drug interactions and related adverse reactions. Expert Opin Drug Saf. 2012;11:933–946.
  • Attout H, Guez S, Ranaivo I, et al. A patient with hyper-IgD syndrome responding to simvastatin treatment. Eur J Intern Med. 2008;19:e82–3.
  • Kuijk LM, Mandey SH, Schellens I, et al. Statin synergizes with LPS to induce IL-1beta release by THP-1 cells through activation of caspase-1. Mol Immunol. 2008;45:2158–2165.
  • Simon A, Drewe E, van der Meer JW, et al. Simvastatin treatment for inflammatory attacks of the hyperimmunoglobulinemia D and periodic fever syndrome. Clin Pharmacol Ther. 2004;75:476–483.
  • Houten SM, Frenkel J, Rijkers GT, et al. Temperature dependence of mutant mevalonate kinase activity as a pathogenic factor in hyper-IgD and periodic fever syndrome. Hum Mol Genet. 2002;11:3115–3124.
  • Zanin V, Marcuzzi A, Kleiner G, et al. Lovastatin dose-dependently potentiates the pro-inflammatory activity of lipopolysaccharide both in vitro and in vivo. J Cardiovasc Transl Res. 2013;6:981–988.
  • Thurnher M, Gruenbacher G, Nussbaumer O. Regulation of mevalonate metabolism in cancer and immune cells. Biochim Biophys Acta. 2013;1831:1009–1015.
  • Diel IJ, Bergner R, Grötz KA. Adverse effects of bisphosphonates: current issues. J Support Oncol. 2007;5:475–482.
  • Agrawal AG, Somani RR. Farnesyltransferase inhibitor as anticancer agent. Mini Rev Med Chem. 2009;9:638–652.
  • Adami S, Bhalla AK, Dorizzi R, et al. The acute-phase response after bisphosphonate administration. Calcif Tissue Int. 1987;41:326–331.
  • Corrado A, Cantatore FP. The bisphosponates: chemical characteristics, skeletal biological effects and extra-skeletal effects. Reumatismo. 2005;57:142–153.
  • Makkonen N, Salminen A, Rogers MJ, et al. Contrasting effects of alendronate and clodronate on RAW 264 macrophages: the role of a bisphosphonate metabolite. Eur J Pharm Sci. 1999;8:109–118.
  • Maruyama N, Takizawa T, Ishibashi H, et al. Protective activity of geranium oil and its component, geraniol, in combination with vaginal washing against vaginal candidiasis in mice. Biol Pharm Bull. 2008;31:1501–1506.
  • Ong TP, Heidor R, de Conti A, et al. Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis. 2006;27:1194–1203.
  • Chang FY, Lu CL. Treatment of irritable bowel syndrome using complementary and alternative medicine. J Chin Med Assoc. 2009;72:294–300.
  • Merat S, Khalili S, Mostajabi P, et al. The effect of enteric-coated, delayed-release peppermint oil on irritable bowel syndrome. Dig Dis Sci. 2010;55:1385–1390.
  • de Moura Espíndola R, Mazzantini RP, Ong TP, et al. Geranylgeraniol and beta-ionone inhibit hepatic preneoplastic lesions, cell proliferation, total plasma cholesterol and DNA damage during the initial phases of hepatocarcinogenesis, but only the former inhibits NF-kappaB activation. Carcinogenesis. 2005;26:1091–1099.
  • Peterson YK, Kelly P, Weinbaum CA, et al. A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. J Biol Chem. 2006;281:12445–12450.
  • Lackner MR, Kindt RM, Carroll PM, et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell. 2005;7:325–336.
  • Zhang FL, Fu HW, Casey PJ, et al. Substitution of cadmium for zinc in farnesyl: proteintransferase alters its substrate specificity. Biochemistry. 1996;35:8166–8171.
  • Ichikawa M, Ohtsuka M, Ohki H, et al. Discovery of DF-461, a potent squalene synthase inhibitor. ACS Med Chem Lett. 2013;4:932–936.
  • Wierzbicki AS, Hardman TC, Viljoen A. New lipid-lowering drugs: an update. Int J Clin Pract. 2012;66:270–280.
  • Bergstrom JD, Kurtz MM, Rew DJ, et al. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA. 1993;90:80–84.
  • Bodar EJ, Kuijk LM, Drenth JP, et al. On-demand anakinra treatment is effective in mevalonate kinase deficiency. Ann Rheum Dis. 2011;70:2155–2158.
  • Vitale A, Rigante D, Lucherini OM, et al. Biological treatments: new weapons in the management of monogenic autoinflammatory disorders. Mediators Inflamm. 2013;2013:939847.
  • Arkwright PD, Abinun M, Cant AJ. Mevalonic aciduria cured by bone marrow transplantation. N Engl J Med. 2007;357:1350.
  • Neven B, Valayannopoulos V, Quartier P, et al. Allogeneic bone marrow transplantation in mevalonic aciduria. N Engl J Med. 2007;356:2700–2703.
  • El-Sayyad HI. Cholesterol overload impairing cerebellar function: the promise of natural products. Nutrition. 2015;31:621–630.
  • Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res. 2006;47:681–699.
  • Suzuki N, Ito T, Matsui H, et al. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition. Springerplus. 2016;5:1429.
  • Ebihara T, Takeuchi T, Moriya Y, et al. Characterization of transporters in the hepatic uptake of TAK-475 M-I, a squalene synthase inhibitor, in rats and humans. Drug Res (Stuttg). 2016;66:316–323.
  • Stein EA, Bays H, O’Brien D, et al. Lapaquistat acetate: development of a squalene synthase inhibitor for the treatment of hypercholesterolemia. Circulation. 2011;123:1974–1985.
  • Liao JK. Squalene synthase inhibitor lapaquistat acetate: could anything be better than statins? Circulation. 2011;123:1925–1928.
  • Seiki S, Frishman WH. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. Cardiol Rev. 2009;17:70–76.
  • Davidson MH. Novel nonstatin strategies to lower low-density lipoprotein cholesterol. Curr Atheroscler Rep. 2009;11:67–70.
  • Cochemé HM, Kelso GF, James AM, et al. Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion. 2007;7(Suppl):S94–102.
  • Dhanasekaran A, Kotamraju S, Kalivendi SV, et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem. 2004;279:37575–37587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.