161
Views
4
CrossRef citations to date
0
Altmetric
Review

Glanzmann’s thrombasthenia: strategies for identification and management

ORCID Icon, ORCID Icon, &
Pages 641-653 | Received 26 Mar 2017, Accepted 08 Jun 2017, Published online: 28 Jun 2017

References

  • Bellucci S, Caen J. Molecular basis of Glanzmann’s thrombasthenia and current strategies in treatment. Blood Rev. 2002;16:193–202.
  • Nurden AT, Fiore M, Nurden P. Pillois X: Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood. 2011;118:5996–6005.
  • Patel D, Vaananen H, Jirouskova M, et al. Dynamics of GPIIb/IIIa-mediated platelet-platelet interactions in platelet adhesion/thrombus formation on collagen in vitro as revealed by videomicroscopy. Blood. 2003;101:929–936.
  • George JN, Caen JP. Nurden AT: Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood. 1990;75:1383–1395.
  • Toogeh G, Sharifian R, Lak M, et al. Presentation and pattern of symptoms in 382 patients with Glanzmann thrombasthenia in Iran. Am J Hematol. 2004;77:198–199.
  • Bury L, Falcinelli E, Chiasserini D, et al. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica. 2016;101:46–56.
  • Hauschner H, Mor-Cohen R, Messineo S, et al. Abnormal cytoplasmic extensions associated with active alphaIIbbeta3 are probably the cause for macrothrombocytopenia in Glanzmann thrombasthenia-like syndrome. Blood Coagul Fibrinolysis. 2015;26:302–308.
  • Kashiwagi H, Kunishima S, Kiyomizu K, et al. Demonstration of novel gain-of-function mutations of αIIbβ3: association with macrothrombocytopenia and Glanzmann thrombasthenia-like phenotype. Mol Genet Genomic Med. 2013;1:77–86.
  • Kobayashi Y, Matsui H, Kanai A, et al. Identification of the integrin beta3 L718P mutation in a pedigree with autosomal dominant thrombocytopenia with anisocytosis. Br J Haematol. 2013;160:521–529.
  • Caen JP, Castaldi PA, Leclerc JC, et al. Congenital bleeding disorders with long bleeding time and normal platelet count: I. Glanzmann’s thrombasthenia (report of fifteen patients). Am J Med. 1966;41:4–26.
  • Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979;64:1393–1401.
  • Di Minno G, Capitanio AM, Thiagarajan P, et al. Exposure of fibrinogen receptors on fresh and stored platelets by ADP and epinephrine as single agents and as a pair. Blood. 1983;61:1054–1059.
  • Phillips DR, Charo IF, Parise LV, et al. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988;71:831–843.
  • Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood. 2008;112:3011–3025.
  • Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell. 1998;94:657–666.
  • Ni H, Denis CV, Subbarao S, et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest. 2000;106:385–392.
  • Andre P, Prasad KS, Denis CV, et al. CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med. 2002;8:247–252.
  • Rosenberg N, Yatuv R, Sobolev V, et al. Major mutations in calf-1 and calf-2 domains of glycoprotein IIb in patients with Glanzmann thrombasthenia enable GPIIb/IIIa complex formation, but impair its transport from the endoplasmic reticulum to the Golgi apparatus. Blood. 2003;101:4808–4815.
  • Jallu V, Diaz-Ricart M, Ordinas A, et al. Two human antibodies reacting with different epitopes on integrin beta 3 of platelets and endothelial cells. Eur J Biochem. 1994;222:743–751.
  • Wihadmadyatami H, Roder L, Berghofer H, et al. Immunisation against alphaIIbbeta3 and alphavbeta3 in a type 1 variant of Glanzmann’s thrombasthenia caused by a missense mutation Gly540Asp on beta3. Thromb Haemost. 2016;116:262–271.
  • D’Andrea G, Colaizzo D, Vecchione G, et al., Team GLsTI. Glanzmann’s thrombasthenia: identification of 19 new mutations in 30 patients. Thromb Haemost. 2002;87:1034–1042.
  • Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost. 2013;39:642–655.
  • Chediak J, Telfer MC, Vander Laan B, et al. Cycles of agglutination-disagglutination induced by ristocetin in thrombasthenic platelets. Br J Haematol. 1979;43:113–126.
  • Poon MC, Di Minno G, d’Oiron R, et al. New insights into the treatment of Glanzmann Thrombasthenia. Transfus Med Rev. 2016;30:92–99.
  • Bury L, Malara A, Gresele P, et al. Outside-in signalling generated by a constitutively activated integrin alphaIIbbeta3 impairs proplatelet formation in human megakaryocytes. PLoS One. 2012;7:e34449.
  • D’Andrea G, Margaglione M, Glansmann’s Thrombasthemia Italian T. Glanzmann’s thrombasthenia: modulation of clinical phenotype by alpha2C807T gene polymorphism. Haematologica. 2003;88:1378–1382.
  • Di Minno G, Zotz RB, d’Oiron R, et al., Glanzmann Thrombasthenia Registry I. The international, prospective Glanzmann Thrombasthenia Registry: treatment modalities and outcomes of non-surgical bleeding episodes in patients with Glanzmann thrombasthenia. Haematologica. 2015;100:1031–1037.
  • Poon MC, d’Oiron R, Zotz RB, et al., Glanzmann Thrombasthenia Registry I. The international, prospective Glanzmann Thrombasthenia Registry: treatment and outcomes in surgical intervention. Haematologica. 2015;100:1038–1044.
  • Poon MC, Demers C, Jobin F, et al. Recombinant factor VIIa is effective for bleeding and surgery in patients with Glanzmann thrombasthenia. Blood. 1999;94:3951–3953.
  • Karimi M, Ravanbod S, Cohan N, et al. How to deal with medical and social aspects of bleeding disorders–preparing women and the family in developing countries. Haemophilia. 2011;17(Suppl 1):42–44.
  • Borhany M, Fatima H, Naz A, et al. Pattern of bleeding and response to therapy in Glanzmann thrombasthenia. Haemophilia. 2012;18:e423–425.
  • Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. Guidelines for the management of hemophilia. Haemophilia. 2013;19:e1–47.
  • Nurden A, Combrie R, Nurden P. Detection of transfused platelets in a patient with Glanzmann thrombasthenia. Thromb Haemost. 2002;87:543–544.
  • Jennings LK, Wang WC, Jackson CW, et al. Hemostasis in Glanzmann’s thrombasthenia (GT): GT platelets interfere with the aggregation of normal platelets. Am J Pediatr Hematol Oncol. 1991;13:84–90.
  • Di Minno G, Coppola A, Di Minno MN, et al. Glanzmann’s thrombasthenia (defective platelet integrin alphaIIb-beta3): proposals for management between evidence and open issues. Thromb Haemost. 2009;102:1157–1164.
  • Al-Battat S, Rand ML, Bouskill V, et al. Glanzmann thrombasthenia platelets compete with transfused platelets, reducing the haemostatic impact of platelet transfusions. Br J Haematol. 2017. DOI: 10.1111/bjh.14623. [Epub ahead of print].
  • Carson JL, Guyatt G, Heddle NM, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA. 2016;316:2025–2035.
  • Blajchman MA, Beckers EA, Dickmeiss E, et al. Bacterial detection of platelets: current problems and possible resolutions. Transfus Med Rev. 2005;19:259–272.
  • Katus MC, Szczepiorkowski ZM, Dumont LJ, et al. Safety of platelet transfusion: past, present and future. Vox Sang. 2014;107:103–113.
  • Vamvakas EC, Blajchman MA. Blood still kills: six strategies to further reduce allogeneic blood transfusion-related mortality. Transfus Med Rev. 2010;24:77–124.
  • Yomtovian RA, Palavecino EL, Dysktra AH, et al. Evolution of surveillance methods for detection of bacterial contamination of platelets in a university hospital, 1991 through 2004. Transfusion. 2006;46:719–730.
  • Jacobs MR, Good CE, Lazarus HM, et al. Relationship between bacterial load, species virulence, and transfusion reaction with transfusion of bacterially contaminated platelets. Clin Infect Dis. 2008;46:1214–1220.
  • Jenkins C, Ramirez-Arcos S, Goldman M, et al. Bacterial contamination in platelets: incremental improvements drive down but do not eliminate risk. Transfusion. 2011;51:2555–2565.
  • Ypma PF, van der Meer PF, Heddle NM, et al. A study protocol for a randomised controlled trial evaluating clinical effects of platelet transfusion products: the Pathogen Reduction Evaluation and Predictive Analytical Rating Score (PREPAReS) trial. BMJ Open. 2016;6:e010156.
  • Thiele T, Pohler P, Kohlmann T, et al. Tolerance of platelet concentrates treated with UVC-light only for pathogen reduction–a phase I clinical trial. Vox Sang. 2015;109:44–51.
  • Seltsam A, Muller TH. Update on the use of pathogen-reduced human plasma and platelet concentrates. Br J Haematol. 2013;162:442–454.
  • Stramer SL, Hollinger FB, Katz LM, et al. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion. 2009;49(Suppl 2):1S–29S.
  • Vamvakas EC. Risk-reduction strategies for platelet transfusion in the United States. Scientific World J. 2011;11:624–640.
  • Di Minno G, Perno CF, Tiede A, et al. Current concepts in the prevention of pathogen transmission via blood/plasma-derived products for bleeding disorders. Blood Rev. 2016;30:35–48.
  • Legler TJ, Fischer I, Dittmann J, et al. Frequency and causes of refractoriness in multiply transfused patients. Ann Hematol. 1997;74:185–189.
  • Slichter SJ. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. The trial to reduce alloimmunization to platelets study group. N Engl J Med. 1997;337:1861–1869.
  • Fiore M, Firah N, Pillois X, et al. Natural history of platelet antibody formation against alphaIIbbeta3 in a French cohort of Glanzmann thrombasthenia patients. Haemophilia. 2012;18:e201–209.
  • Poon MC, d’Oiron R, von Depka M, et al., International Data Collection on Recombinant Factor V, Congenital Platelet Disorders Study G. Prophylactic and therapeutic recombinant factor VIIa administration to patients with Glanzmann’s thrombasthenia: results of an international survey. J Thromb Haemost. 2004;2:1096–1103.
  • Santoro C, Rago A, Biondo F, et al. Prevalence of allo-immunization anti-HLA and anti-integrin alphaIIbbeta3 in Glanzmann Thromboasthenia patients. Haemophilia. 2010;16:805–812.
  • Siddiq S, Clark A, Mumford A. A systematic review of the management and outcomes of pregnancy in Glanzmann thrombasthenia. Haemophilia. 2011;17:e858–869.
  • Ito K, Yoshida H, Hatoyama H, et al. Antibody removal therapy used successfully at delivery of a pregnant patient with Glanzmann’s thrombasthenia and multiple anti-platelet antibodies. Vox Sang. 1991;61:40–46.
  • Martin I, Kriaa F, Proulle V, et al. Protein A Sepharose immunoadsorption can restore the efficacy of platelet concentrates in patients with Glanzmann’s thrombasthenia and anti-glycoprotein IIb-IIIa antibodies. Br J Haematol. 2002;119:991–997.
  • Boval B, Bellucci S, Boyer-Neumann C, et al. Glanzmann thrombasthenia and pregnancy: clinical observations and management of four affected women. Supplement J Thromb Haemost. 2001 ;(suppl.) p1154 [abstract].
  • Jallu V, Pico M, Chevaleyre J, et al. Characterization of an antibody to the integrin beta 3 subunit (GP IIIa) from a patient with neonatal thrombocytopenia and an inherited deficiency of GP IIb-IIIa complexes in platelets (Glanzmann’s thrombasthenia). Hum Antibodies Hybridomas. 1992;3:93–106.
  • Tengborn L, Petruson B. A patient with Glanzmann thrombasthenia and epistaxis successfully treated with recombinant factor VIIa. Thromb Haemost. 1996;75:981–982.
  • d’Oiron R, Menart C, Trzeciak MC, et al. Use of recombinant factor VIIa in 3 patients with inherited type I Glanzmann’s thrombasthenia undergoing invasive procedures. Thromb Haemost. 2000;83:644–647.
  • Poon MC, Zotz R, Di Minno G, et al. Glanzmann’s thrombasthenia treatment: a prospective observational registry on the use of recombinant human activated factor VII and other hemostatic agents. Semin Hematol. 2006;43:S33–36.
  • Collins PW, Chalmers E, Hart DP, et al. Diagnosis and treatment of factor VIII and IX inhibitors in congenital haemophilia: (4th edition). UK Haemophilia Centre Doctors Organization. Br J Haematol. 2013;160:153–170.
  • Villar A, Aronis S, Morfini M, et al. Pharmacokinetics of activated recombinant coagulation factor VII (NovoSeven) in children vs. adults with haemophilia A. Haemophilia. 2004;10:352–359.
  • Berrettini M, Mariani G, Schiavoni M, et al. Pharmacokinetic evaluation of recombinant, activated factor VII in patients with inherited factor VII deficiency. Haematologica. 2001;86:640–645.
  • Neufeld EJ, Negrier C, Arkhammar P, et al. Safety update on the use of recombinant activated factor VII in approved indications. Blood Rev. 2015;29(Suppl 1):S34–41.
  • Almeida AM, Khair K, Hann I, et al. The use of recombinant factor VIIa in children with inherited platelet function disorders. Br J Haematol. 2003;121:477–481.
  • Poon MC. Factor VIIa. In: Michelson AD, editor. Platelets. 3rd ed. New York: Academic Press; 2013. p. 1257–1274.
  • Rajpurkar M, Chitlur M, Recht M, et al. Use of recombinant activated factor VII in patients with Glanzmann’s thrombasthenia: a review of the literature. Haemophilia. 2014;20:464–471.
  • Phillips DR, Baughan AK. Fibrinogen binding to human platelet plasma membranes. Identification of two steps requiring divalent cations. J Biol Chem. 1983;258:10240–10246.
  • Xiao T, Takagi J, Coller BS, et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 2004;432:59–67.
  • Hoffman M, Monroe DM 3rd, Roberts HR. Activated factor VII activates factors IX and X on the surface of activated platelets: thoughts on the mechanism of action of high-dose activated factor VII. Blood Coagul Fibrinolysis. 1998;9(Suppl 1):S61–65.
  • Reverter JC, Beguin S, Kessels H, et al. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and “clinical restenosis”. J Clin Invest. 1996;98:863–874.
  • Dargaud Y, Bordet JC, Trzeciak MC, et al. A case of Glanzmann’s thrombasthenia successfully treated with recombinant factor viia during a surgical procedure: observations on the monitoring and the mechanism of action of this drug. Haematologica. 2006;91:ECR20.
  • Monroe DM, Hoffman M, Oliver JA, et al. Platelet activity of high-dose factor VIIa is independent of tissue factor. Br J Haematol. 1997;99:542–547.
  • Weeterings C, De Groot PG, Adelmeijer J, et al. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface. Blood. 2008;112:3227–3233.
  • Lisman T, Adelmeijer J, Heijnen HF, de Groot PG. Recombinant factor VIIa restores aggregation of alphaIIbbeta3-deficient platelets via tissue factor-independent fibrin generation. Blood. 2004;103:1720–1727.
  • Lisman T, Moschatsis S, Adelmeijer J, et al. Recombinant factor VIIa enhances deposition of platelets with congenital or acquired alpha IIb beta 3 deficiency to endothelial cell matrix and collagen under conditions of flow via tissue factor-independent thrombin generation. Blood. 2003;101:1864–1870.
  • He S, Blomback M, Jacobsson Ekman G, et al. The role of recombinant factor VIIa (FVIIa) in fibrin structure in the absence of FVIII/FIX. J Thromb Haemost. 2003;1:1215–1219.
  • He S, Ekman GJ, Hedner U. The effect of platelets on fibrin gel structure formed in the presence of recombinant factor VIIa in hemophilia plasma and in plasma from a patient with Glanzmann thrombasthenia. J Thromb Haemost. 2005;3:272–279.
  • Lopez-Vilchez I, Hedner U, Altisent C, et al. Redistribution and hemostatic action of recombinant activated factor VII associated with platelets. Am J Pathol. 2011;178:2938–2948.
  • Proulle V, Hugel B, Guillet B, et al. Injection of recombinant activated factor VII can induce transient increase in circulating procoagulant microparticles. Thromb Haemost. 2004;91:873–878.
  • Bellucci S, Devergie A, Gluckman E, et al. Complete correction of Glanzmann’s thrombasthenia by allogeneic bone-marrow transplantation. Br J Haematol. 1985;59:635–641.
  • Johnson A, Goodall AH, Downie CJ, et al. Bone marrow transplantation for Glanzmann’s thrombasthenia. Bone Marrow Transplant. 1994;14:147–150.
  • McColl MD, Gibson BE. Sibling allogeneic bone marrow transplantation in a patient with type I Glanzmann’s thrombasthenia. Br J Haematol. 1997;99:58–60.
  • Bellucci S, Damaj G, Boval B, et al. Bone marrow transplantation in severe Glanzmann’s thrombasthenia with antiplatelet alloimmunization. Bone Marrow Transplant. 2000;25:327–330.
  • Flood VH, Johnson FL, Boshkov LK, et al. Sustained engraftment post bone marrow transplant despite anti-platelet antibodies in Glanzmann thrombasthenia. Pediatr Blood Cancer. 2005;45:971–975.
  • Fujimoto TT, Kishimoto M, Ide K, et al. Glanzmann thrombasthenia with acute myeloid leukemia successfully treated by bone marrow transplantation. Int J Hematol. 2005;81:77–80.
  • Connor P, Khair K, Liesner R, et al. Stem cell transplantation for children with Glanzmann thrombasthenia. Br J Haematol. 2008;140:568–571.
  • Ishaqi MK, El-Hayek M, Gassas A, et al. Allogeneic stem cell transplantation for Glanzmann thrombasthenia. Pediatr Blood Cancer. 2009;52:682–683.
  • Kitko CL, Levine JE, Matthews DC, et al. Successful unrelated donor cord blood transplantation for Glanzmann’s thrombasthenia. Pediatr Transplant. 2011;15:e42–46.
  • Wiegering V, Winkler B, Langhammer F, et al. Allogeneic hematopoietic stem cell transplantation in Glanzmann thrombasthenia complicated by platelet alloimmunization. Klin Padiatr. 2011;223:173–175.
  • Walz A, Lenzen A, Curtis B, et al. Use of allogeneic stem cell transplantation for moderate-severe Glanzmann thrombasthenia. Platelets. 2015;26:702–704.
  • Fang J, Hodivala-Dilke K, Johnson BD, et al. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood. 2005;106:2671–2679.
  • Fang J, Jensen ES, Boudreaux MK, et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A. 2011;108:9583–9588.
  • Sullivan SK, Mills JA, Koukouritaki SB, et al. High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood. 2014;123:753–757.
  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–1278.
  • Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.