240
Views
3
CrossRef citations to date
0
Altmetric
Review

Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment?

, , , & ORCID Icon
Pages 69-84 | Received 31 Oct 2017, Accepted 21 Nov 2017, Published online: 28 Nov 2017

References

  • Addy C, Downey DG, Elborn JS. Improvements in symptomatic treatment strategies for cystic fibrosis: delivering CF care in the 21st century. Expert Opin Orphan Drugs. 2016;4(1):5–19.
  • Rowe SM, Borowitz DS, Burns JL, et al. Progress in cystic fibrosis and the CF Therapeutics Development Network. Thorax. 2012;67(10):882–890.
  • Prayle AP, Smyth AR. From pipeline to patient: new developments in cystic fibrosis therapeutics. Expert Opin Pharmacother. 2013;14(3):323–329.
  • Martiniano SL, Hoppe JE, Sagel SD, et al. Advances in the diagnosis and treatment of cystic fibrosis. Adv Pediat. 2014;61(1):225–243.
  • Elborn JS. Cystic fibrosis. The Lancet. 2016;388(10059):2519–2531. DOI:10.1016/S0140-6736(16)00576-6.
  • Amin R, Ratjen F. Emerging drugs for cystic fibrosis. Expert Opin Emerg Drugs. 2014;19(1):143–155. DOI:10.1517/14728214.2014.882316.
  • Taylor-Cousar JL, Von Kessel KA, Young R, et al. Potential of anti-inflammatory treatment for cystic fibrosis lung disease. J Inflamm Res. 2010;3:61–74. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218732/
  • Cohen-Cymberknoh M, Kerem E, Ferkol T, et al. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax. 2013;68(12):1157–1162.
  • Cuthbert AW. New horizons in the treatment of cystic fibrosis. Br J Pharmacol. 2011;163(1):173–183.
  • Collawn JF, Matalon S. CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L917–23.
  • Frerichs C, Smyth A. Treatment strategies for cystic fibrosis: what’s in the pipeline?. Expert Opin Pharmacother. 2009;10(7):1191–1202.
  • Cantin AM, Hartl D, Konstan MW, et al. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–430. DOI:10.1016/j.jcf.2015.03.003.
  • Pezzulo AA, Tang XX, Hoegger MJ, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–113. Available from: http://www.nature.com/nature/journal/v487/n7405/abs/nature11130.html#supplementary-information
  • Hoegger MJ, Fischer AJ, McMenimen JD, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science (New York, NY). 2014 15;345(6198):818–822. doi:10.1126/science.1255825
  • Ranganathan SC, Parsons F, Gangell C, et al. Evolution of pulmonary inflammation and nutritional status in infants and young children with cystic fibrosis. Thorax. 2011;66(5):408–413.
  • Dubin P, McAllister F, Kolls J. Is cystic fibrosis a TH17 disease? Inflamm Res. 2007;56(6):221.
  • Decraene A, Willems-Widyastuti A, Kasran A, et al. Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable cystic fibrosis patients. Respir Res. 2010;11(1):177.
  • Dubin PJ, Martz A, Eisenstatt JR, et al. Interleukin-23-mediated inflammation in Pseudomonas aeruginosa pulmonary infection. Infect Immun. 2012;80(1):398–409.
  • Chmiel JF, Konstan MW, Elborn JS. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harb Perspect Med. 2013;3(10):a009779.
  • Berube J, Roussel L, Nattagh L, et al. Loss of cystic fibrosis transmembrane conductance regulator function enhances activation of p38 and ERK MAPKs, increasing interleukin-6 synthesis in airway epithelial cells exposed to Pseudomonas aeruginosa. J Biol Chem. 2010;285(29):22299–22307.
  • Nauseef WM, Borregaard N. Neutrophils at work. Nature Immunol. 2014;15(7):602–611.
  • Mall MA, Schultz C, New A. Player in the game: epithelial cathepsin S in early cystic fibrosis lung disease. Am J Respir Crit Care Med. 2014;190(2):126–127.
  • Gehrig S, Duerr J, Weitnauer M, et al. Lack of neutrophil elastase reduces inflammation, mucus hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosis-like lung disease. Am J Respir Crit Care Med. 2014;189(9):1082–1092.
  • Hartl D, Gaggar A, Bruscia E, et al. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros. 2012;11(5):363–382.
  • Dasenbrook EC, Chmiel JF. Anti-inflammatory therapies for cystic fibrosis. In: Azuma A, Schechter MS, editors. Treatment of cystic fibrosis and other rare lung diseases. Basel: Springer Basel; 2017. p. 139–151.
  • Auerbach HS, Williams M, Kirkpatrick JA, et al. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet (London, England). 1985;2(8457):686–688.
  • Eigen H, Rosenstein BJ, FitzSimmons S, et al. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr. 1995;126(4):515–523.
  • Cheng K, Ashby D, Smyth RL. Oral steroids for long-term use in cystic fibrosis. Cochrane Database Syst Rev. 2015;12. DOI:10.1002/14651858.CD000407.pub4
  • Lai HC, FitzSimmons SC, Allen DB, et al. Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N Engl J Med. 2000;342(12):851–859.
  • Ross KR, Chmiel JF, Konstan MW. The role of inhaled corticosteroids in the management of cystic fibrosis. Pediatr Drugs. 2009;11(2):101–113.
  • Balfour-Lynn IM, Welch K. Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev. 2016;8. DOI:10.1002/14651858.CD001915.pub5
  • Mogayzel PJ Jr., Naureckas ET, Robinson KA, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med.. 2013;187(7):680–689.
  • Australian Cystic Fibrosis Data Registry. 17th annual report. 2014. [cited 2017 Jul 1]. Available from: https://www.cysticfibrosis.org.au/media/wysiwyg/CF-Australia/medical documents/CFA_DataRegistryReport_2014_Final.pdf
  • Schiotz PO, Jorgensen M, Flensborg EW, et al. Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. a longitudinal study of immune complex activity and inflammatory response in sputum sol-phase of cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infections: influence of local steroid treatment. Acta Paediatr Scand. 1983;72(2):283–287.
  • Dinwiddie R. Anti-inflammatory therapy in cystic fibrosis. J Cyst Fibros. 2005;4:45–48.
  • Nikolaizik WH, Schöni MH. Pilot study to assess the effect of inhaled corticosteroids on lung function in patients with cystic fibrosis. J Pediatr. 1996;128(2):271–274.
  • Bisgaard H, Pedersen SS, Nielsen KG, et al. Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Psuedomonas aeruginosa infection. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1190–1196.
  • Balfour-Lynn IM, Klein NJ, Dinwiddie R. Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Arch Dis Child. 1997;77(2):124–130.
  • Dauletbaev N, Viel K, Behr J, et al. Effects of short-term inhaled fluticasone on oxidative burst of sputum cells in cystic fibrosis patients. Eur Respir J. 1999;14(5):1150–1155.
  • Balfour-Lynn IM, Lees B, Hall P, et al. Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med. 2006;173(12):1356–1362.
  • Zhang X, Moilanen E, Kankaanranta H. Beclomethasone, budesonide and fluticasone propionate inhibit human neutrophil apoptosis. Eur J Pharmacol. 2001;431(3):365–371.
  • Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. The Lancet. 2014;384(9944):691–702.
  • Kramer R, Sauer-Heilborn A, Welte T, et al. High individuality of respiratory bacterial communities in a large cohort of adult cystic fibrosis patients under continuous antibiotic treatment. PloS One. 2015;10(2):e0117436.
  • Saiman L, Anstead M, Mayer-Hamblett N, et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2010;303(17):1707–1715.
  • Ratjen F, Saiman L, Mayer-Hamblett N, et al. Effect of azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa. Chest. 2012;142(5):1259–1266.
  • Lendermon EA, Coon TA, Bednash JS, et al. Azithromycin decreases NALP3 mRNA stability in monocytes to limit inflammasome-dependent inflammation. Respir Res. 2017;18. DOI:10.1186/s12931-017-0608-8.
  • Samson C, Tamalet A, Thien HV, et al. Long-term effects of azithromycin in patients with cystic fibrosis. Respir Med. 2016;117:1–6.
  • Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14(3):293–304.
  • Ryan G, Jahnke N, Remmington T. Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis. Cochrane Database Syst Rev. 2012;12. DOI:10.1002/14651858.CD008319.pub2
  • Zhu B, Padroni M, Colombo G, et al. The development of a single-use, capsule-free multi-breath tobramycin dry powder inhaler for the treatment of cystic fibrosis. Int J Pharm. 2016;514(2):392–398.
  • Ryan G, Singh M, Dwan K. Inhaled antibiotics for long-term therapy in cystic fibrosis. The Cochrane Database Syst Rev. 2011;16(3): Cd001021. doi:10.1002/14651858.CD001021.pub2.
  • Döring G, Flume P, Heijerman H, et al. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11(6):461–479.
  • Agent P, Parrott H. Inhaled therapy in cystic fibrosis: agents, devices and regimens. Breathe. 2015;11(2):110–118.
  • Hewer SL. Inhaled antibiotics in cystic fibrosis: what’s new?. J R Soc Med. 2012;105(Suppl 2):S19–S24.
  • Henryk M, Lenoir G, Pelikan L, et al. 110 Head-to-head comparison of two inhaled tobramycin solutions in cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa (Pa) infection. Journal of Cystic Fibrosis. 2011;10(Suppl 1):S28.
  • Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N, et al. Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med. 2011;165(9):847–856.
  • Ratjen F, Munck A, Kho P, et al. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax. 2010;65(4):286–291.
  • Konstan MW, Geller DE, Minic P, et al. Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the EVOLVE trial. Pediatr Pulmonol. 2011;46(3):230–238.
  • Galeva I, Konstan MW, Higgins M, et al. Tobramycin inhalation powder manufactured by improved process in cystic fibrosis: the randomized EDIT trial. Curr Med Res Opin. 2013;29(8):947–956.
  • Konstan MW, Flume PA, Kappler M, et al. Safety, Efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros. 2011;10(1):54–61.
  • Gziut M, MacGregor HJ, Nevell TG, et al. Anti-inflammatory effects of tobramycin and a copper–tobramycin complex with superoxide dismutase-like activity. Br J Pharmacol. 2013;168(5):1165–1181.
  • Tsivkovskii R, Sabet M, Tarazi Z, et al. Levofloxacin reduces inflammatory cytokine levels in human bronchial epithelia cells: implications for aerosol MP-376 (levofloxacin solution for inhalation) treatment of chronic pulmonary infections. FEMS Immunol Med Microbiol. 2011;61(2):141–146.
  • Trapnell BC, McColley SA, Kissner DG, et al. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. Am J Respir Crit Care Med. 2012;185(2):171–178.
  • Noah TL, Ivins SS, Abode KA, et al. Inhaled versus systemic antibiotics and airway inflammation in children with cystic fibrosis and Pseudomonas. Pediatr Pulmonol. 2010;45(3):281–290.
  • Waters V, Smyth A. Cystic fibrosis microbiology: advances in antimicrobial therapy. J Cyst Fibros. 2015;14(5):551–560.
  • McElvaney NG. Alpha-1 antitrypsin therapy in cystic fibrosis and the lung disease associated with alpha-1 antitrypsin deficiency. Ann Am Thorac Soc. 2016;13(Supplement_2):S191–S196.
  • Wanner A, Arce AD, Pardee E. Novel therapeutic uses of alpha-1 antitrypsin: a window to the future. Copd. 2012;9(6):583–588.
  • Griese M, Latzin P, Kappler M, et al. α1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur Respir J. 2007;29(2):240–250.
  • Kerem E, Bauer S, Strauss P, et al. Safety and efficacy of inhaled human alpha-1 antitrypsin (AAT) in cystic fibrosis (CF): a report of a phase II clinical study. A26. New data regarding cystic fibrosis. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2009. p. A1185.
  • Gaggar A, Chen J, Chmiel JF, et al. Inhaled alpha1-proteinase inhibitor therapy in patients with cystic fibrosis. J Cyst Fibros. 2016;15(2):227–233.
  • Edmondson C, Davies JC. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis. 2016;7(3):170–183.
  • Galli F, Battistoni A, Gambari R, et al. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochimi Biophys Acta. 2012;1822(5):690–713.
  • Ciofu O, Lykkesfeldt J. Antioxidant supplementation for lung disease in cystic fibrosis. The Cochrane Database Syst Rev. 2014;8:Cd007020. DOI:10.1002/14651858.CD007020.pub3
  • Tirouvanziam R, Conrad CK, Bottiglieri T, et al. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A. 2006;103(12):4628–4633.
  • Lands LC, Grey V, Smountas AA, et al. Lymphocyte glutathione levels in children with cystic fibrosis. Chest. 1999;116(1):201–205.
  • Sagel SD. The challenges of developing effective anti-inflammatory agents in cystic fibrosis. J Cyst Fibros. 2015;14(2):164–166.
  • Conrad C, Lymp J, Thompson V, et al. Long-term treatment with oral N-acetylcysteine: affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. J Cyst Fibros. 2015;14(2):219–227.
  • Calabrese C, Tosco A, Abete P, et al. Randomized, single blind, controlled trial of inhaled glutathione vs placebo in patients with cystic fibrosis. J Cyst Fibros. 2015;14(2):203–210.
  • Griese M, Kappler M, Eismann C, et al. Inhalation treatment with glutathione in patients with cystic fibrosis. A randomized clinical trial. Am J Respir Crit Care Med. 2013;188(1):83–89.
  • Konstan MW, Hoppel CL, Chai BL, et al. Ibuprofen in children with cystic fibrosis: pharmacokinetics and adverse effects. J Pediatr. 1991;118(6):956–964.
  • Lands LC, Stanojevic S. Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst Rev. 2016;4:CD001505.
  • Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med. 1995;332(13):848–854.
  • Lands LC, Milner R, Cantin AM, et al. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr. 2007;151(3):249–254.
  • Carlile GW, Robert R, Goepp J, et al. Ibuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking. J Cyst Fibros. 2015;14(1):16–25.
  • Bertenshaw C, Watson AR, Lewis S, et al. Survey of acute renal failure in patients with cystic fibrosis in the UK. Thorax. 2007;62(6):541–545.
  • Lahiri T, Guillet A, Diehl S, et al. High-dose ibuprofen is not associated with increased biomarkers of kidney injury in patients with cystic fibrosis. Pediatr Pulmonol. 2014;49(2):148–153.
  • Konstan MW, VanDevanter DR, Rasouliyan L, et al. Trends in the use of routine therapies in cystic fibrosis: 1995–2005. Pediatr Pulmonol. 2010;45(12):1167–1172.
  • Lands LC, Dauletbaev N. High-dose ibuprofen in cystic fibrosis. Pharmaceuticals. 2010;3(7):2213–2224.
  • Yazdi AK, Smyth HDC. Carrier-free high-dose dry powder inhaler formulation of ibuprofen: physicochemical characterization and in vitro aerodynamic performance. Int J Pharm. 2016;511(1):403–414.
  • Dauletbaev N, Lam J, Eklove D, et al. Ibuprofen modulates NF-kB activity but not IL-8 production in cystic fibrosis respiratory epithelial cells. Respiration. 2010;79(3):234–242.
  • Vij N, Amoako MO, Mazur S, et al. CHOP transcription factor mediates IL-8 signaling in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol. 2008;38(2):176–184.
  • Andersson C, Zaman MM, Jones AB, et al. Alterations in immune response and PPAR/LXR regulation in cystic fibrosis macrophages. J Cyst Fibros. 2008;7(1):68–78.
  • Rymut SM, Kampman CM, Corey DA, et al. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L317–L327.
  • Rymut SM, Ivy T, Corey DA, et al. Role of exchange protein activated by cAMP 1 in regulating rates of microtubule formation in cystic fibrosis epithelial cells. Am J Respir Cell Mol Biol. 2015;53(6):853–862.
  • Hallows KR, Fitch AC, Richardson CA, et al. Up-regulation of AMP-activated kinase by dysfunctional cystic fibrosis transmembrane conductance regulator in cystic fibrosis airway epithelial cells mitigates excessive inflammation. J Biol Chem. 2006;281(7):4231–4241.
  • Konstan MW, Schluchter MD, Xue W, et al. Clinical use of ibuprofen is associated with slower FEV(1) decline in children with cystic fibrosis. Am J Respir Crit Care Med. 2007;176(11):1084–1089.
  • Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–518.
  • Onischuk AA, Tolstikova TG, An’kov SV, et al. Ibuprofen, indomethacin and diclofenac sodium nanoaerosol: generation, inhalation delivery and biological effects in mice and rats. J Aerosol Sci. 2016;100:164–177.
  • Tyrrell J, Tarran R. Gaining the upper hand on pulmonary drug delivery. J Pharmacovigil. 2014;2(1):118.
  • Savla R, Minko T. Nanotechnology approaches for inhalation treatment of fibrosis. J Drug Target. 2013;21(10):914–925.
  • d’Angelo I, Conte C, La RMI, et al. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev. 2014;75:92–111.10.1016/j.addr.2014.05.008.
  • Klinger-Strobel M, Lautenschlager C, Fischer D, et al. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis–where do we stand? Expert Opin Drug Deliv. 2015;12(8):1351–1374. DOI:10.1517/17425247.2015.1007949.
  • George PM, Banya W, Pareek N, et al. Improved survival at low lung function in cystic fibrosis: cohort study from 1990 to 2007. Bmj. 2011;342. DOI:10.1136/bmj.d1008.
  • Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. The Lancet Respir Med. 2013;1(5):402–413. DOI:10.1016/s2213-2600(13)70072-9.
  • Rogliani P, Calzetta L, Coppola A, et al. Optimizing drug delivery in COPD: the role of inhaler devices. Respir Med. 2017;124:6–14.
  • Sigurdsson HH, Kirch J, Lehr C-M. Mucus as a barrier to lipophilic drugs. Int J Pharm. 2013;453(1):56–64.
  • Ibrahim BM, Tsifansky MD, Yang Y, et al. Challenges and advances in the development of inhalable drug formulations for cystic fibrosis lung disease. Expert Opin Drug Deliv. 2011;8(4):451–466. DOI:10.1517/17425247.2011.561310.
  • Suk JS, Lai SK, Wang -Y-Y, et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials. 2009;30(13):2591–2597.
  • Muralidharan P, Malapit M, Mallory E, et al. Inhalable nanoparticulate powders for respiratory delivery. Nanomed Nanotech Biol Med. 2015;11(5):1189–1199.
  • El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract. 2015;2. DOI:10.5339/gcsp.2015.2
  • Patton JS, Brain JD, Davies LA, et al. The particle has landed–characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23(Suppl 2):S71–87.
  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244–249.
  • Traini D. Inhalation drug delivery. Hoboken, New Jersey: John Wiley & Sons, Ltd; 2013. p. 1–14.
  • Pressler T. Targeting airway inflammation in cystic fibrosis in children: past, present, and future. Paediatr Drugs. 2011;13(3):141–147.
  • Darquenne C. Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv. 2012;25(3):140–147.
  • Al-Hallak MH, Sarfraz MK, Azarmi S, et al. Pulmonary delivery of inhalable nanoparticles: dry powder inhalers. Ther Deliv. 2011;2(10):1313–1324.
  • Yang Y, Tsifansky MD, Shin S, et al. Mannitol-guided delivery of ciprofloxacin in artificial cystic fibrosis mucus model. Biotechnol Bioeng. 2011;108(6):1441–1449.
  • Ren F, Su J, Xiong H, et al. Characterization of ibuprofen microparticle and improvement of the dissolution. Pharm Dev Technol. 2017;22(1):63–68.
  • Grund S, Bauer M, Fischer D. Polymers in drug delivery—state of the art and future trends. Adv Eng Mater. 2011;13(3):B61–B87.
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–221.
  • Cu Y, Saltzman WM. Stealth particles give mucus the slip. ‎Nat. Mater. 2009;8(1):11–13.
  • Dailey LA, Jekel N, Fink L, et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol. 2006;215(1):100–108.
  • Frohlich E, Roblegg E. Mucus as barrier for drug delivery by nanoparticles. J Nanosci Nanotechnol. 2014;14(1):126–136.
  • De Souza Carvalho C, Daum N, Lehr C-M. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev. 2014;75:129–140.
  • Feng W, Garrett H, Speert DP, et al. Improved clearability of cystic fibrosis sputum with dextran treatment in vitro. Am J Respir Crit Care Med. 1998;157(3 Pt 1):710–714.
  • Tang JX, Wen Q, Bennett A, et al. Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol. 2005;289(4):L599–605.
  • Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.
  • Chen W, Hu X, Hong Y, et al. Ibuprofen nanoparticles prepared by a PGSS™-based method. Powder Technology. 2013;245(Supplement C):241–250.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.
  • Cipolla D, Shekunov B, Blanchard J, et al. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev. 2014;75:53–80.
  • Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm. 2010;387(1–2):187–198.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Di Foggia M, Bonora S, Tinti A, et al. DSC and Raman study of DMPC liposomes in presence of ibuprofen at different pH. J Therm Anal Calorim. 2017;127(2):1407–1417.
  • Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using Pulmosphere™ technology. J Aerosol Med Pulm Drug Deliv. 2011;24(4):175–182.
  • Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139–151.
  • Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22.
  • Caretti A, Bragonzi A, Facchini M, et al. Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim Biophys Acta. 2014;1840(1):586–594.
  • Lamprecht A, Saumet JL, Roux J, et al. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm. 2004;278(2):407–414.
  • Perge L, Robitzer M, Guillemot C, et al. New solid lipid microparticles for controlled ibuprofen release: formulation and characterization study. Int J Pharm. 2012;422(1–2):59–67.
  • Lavorini F, Fontana GA, Usmani OS. New inhaler devices - the good, the bad and the ugly. Respiration. 2014;88(1):3–15.
  • Yawn BP, Colice GL, Hodder R. Practical aspects of inhaler use in the management of chronic obstructive pulmonary disease in the primary care setting. Int J Chron Obstruct Pulmon Dis. 2012;7:495–502.
  • Bonini M, Usmani OS. The importance of inhaler devices in the treatment of COPD. COPD Res Pract. 2015;1(1):9.
  • Papi A, Haughney J, Virchow JC, et al. Inhaler devices for asthma: a call for action in a neglected field. Eur Respir J. 2011;37(5):982–985.
  • Meenach SA, Vogt FG, Anderson KW, et al. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine. 2013;8:275–293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.