403
Views
14
CrossRef citations to date
0
Altmetric
Review

Advances in the treatment of neuronal ceroid lipofuscinosis

, , , &
Pages 473-500 | Received 21 Jun 2019, Accepted 21 Oct 2019, Published online: 27 Nov 2019

References

  • Schulz A, Kohlschutter A, Mink J, et al. Ncl diseases - clinical perspectives. Biochim Biophys Acta. 2013 Nov;1832(11):1801–1806.
  • Sondhi D, Crystal RG, Kaminsky SM. Gene therapy for inborn errors of metabolism: batten disease. In: Tuszynski MH, editor. Translational neuroscience: fundamental approaches for neurological disorders. Boston, MA: Springer US; 2016. p. 111–129.
  • Donsante A, Boulis NM. Progress in gene and cell therapies for the neuronal ceroid lipofuscinoses. Expert Opin Biol Ther. 2018 Jul;18(7):755–764.
  • Mole SE, Anderson G, Band HA, et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 2019 Jan;18(1):107–116.
  • Rakheja D, Bennett MJ. Neuronal ceroid-lipofuscinoses. Trans Sci Rare Dis. 2018;3:83–95.
  • Johnson TB, Cain JT, White KA, et al. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol. 2019 Mar;15(3):161–178.
  • Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov. 2018 Feb;17(2):133–150.
  • Glees P, Hasan M. Lipofuscin in neuronal aging and diseases. Norm Pathol Anat (Stuttg). 1976;32:1–68.
  • Cooper JD. The neuronal ceroid lipofuscinoses: the same, but different?. Biochem Soc Trans. 2010 Dec;38(6):1448–1452.
  • Palmer DN, Martinus RD, Cooper SM, et al. Ovine ceroid lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial atp synthase have the same nh2-terminal sequence. J Biol Chem. 1989 Apr 5;264(10):5736–5740.
  • Tyynela J, Palmer DN, Baumann M, et al. Storage of saposins a and d in infantile neuronal ceroid-lipofuscinosis. FEBS Lett. 1993 Sep 6;330(1):8–12.
  • Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2009 Apr;1793(4):697–709.
  • Anderson GW, Goebel HH, Simonati A. Human pathology in ncl. Biochim Biophys Acta. 2013 Nov;1832(11):1807–1826.
  • Mole SE, Haltia M. Chapter 70 - the neuronal ceroid-lipofuscinoses (Batten disease). In: Rosenberg RN, Pascual JM, editors. Rosenberg’s molecular and genetic basis of neurological and psychiatric disease (fifth edition). Boston: Academic Press; 2015. p. 793–808.
  • Levine AS, Lemieux B, Brunning R, et al. Ceroid accumulation in a patient with progressive neurological disease. Pediatrics. 1968 Sep;42(3):583–591.
  • Cotman SL, Staropoli JF. The juvenile Batten disease protein, cln3, and its role in regulating anterograde and retrograde post-golgi trafficking. Clin Lipidol. 2012 Feb;7(1):79–91.
  • Santavuori P. Neuronal ceroid-lipofuscinoses in childhood. Brain Dev. 1988;10(2):80–83.
  • Fietz M, AlSayed M, Burke D, et al. Diagnosis of neuronal ceroid lipofuscinosis type 2 (cln2 disease): expert recommendations for early detection and laboratory diagnosis. Mol Genet Metab. 2016 Sep;119(1–2):160–167.
  • Palmer DN, Barry LA, Tyynela J, et al. Ncl disease mechanisms. Biochim Biophys Acta. 2013 Nov;1832(11):1882–1893.
  • Haltia M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol. 2003 Jan;62(1):1–13.
  • Kohlschutter A, Schulz A, Bartsch U, et al. Current and emerging treatment strategies for neuronal ceroid lipofuscinoses. CNS Drugs. 2019 Apr;33(4):315–325.
  • Markham A. Cerliponase alfa: first global approval. Drugs. 2017 Jul;77(11):1247–1249.
  • Cardona F, Rosati E. Neuronal ceroid-lipofuscinoses in italy: an epidemiological study. Am J Med Genet. 1995 Jun 5;57(2):142–143.
  • Augestad LB, Diderichsen J. [neuronal ceroid lipofuscinoses]. Tidsskr Nor Laegeforen. 2006 Aug 10;126(15):1908–1910.
  • Mink JW, Augustine EF, Adams HR, et al. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013 Sep;28(9):1101–1105.
  • Nita DA, Mole SE, Minassian BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016 Sep 1;18(S2):73–88.
  • Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005 Sep;6(3):107–126.
  • Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci. 2011 Feb;68(3):453–474.
  • Carcel-Trullols J, Kovacs AD, Pearce DA. Cell biology of the ncl proteins: what they do and don’t do. Biochim Biophys Acta. 2015 Oct;1852(10Pt B):2242–2255.
  • Kyttala A, Lahtinen U, Braulke T, et al. Functional biology of the neuronal ceroid lipofuscinoses (ncl) proteins. Biochim Biophys Acta. 2006 Oct;1762(10):920–933.
  • Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012 Jan;33(1):42–63.
  • Kmoch S, Stranecky V, Emes RD, et al. Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2013 Nov;1832(11):1831–1841.
  • Sondhi D, Rosenberg JB, Van de Graaf BG, et al. Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs. 2013 Dec 1;1(12):951–975.
  • Faller KM, Gutierrez-Quintana R, Mohammed A, et al. The neuronal ceroid lipofuscinoses: opportunities from model systems. Biochim Biophys Acta. 2015 Oct;1852(10Pt B):2267–2278.
  • Neverman NJ, Best HL, Hofmann SL, et al. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2015 Oct;1852(10Pt B):2292–2300.
  • Tarczyluk MA, Cooper JD. Investigative and emerging treatments for Batten disease. Expert Opin Orphan Drugs. 2015;3(9):1031–1045.
  • Geraets RD, Koh S, Hastings ML, et al. Moving towards effective therapeutic strategies for neuronal ceroid lipofuscinosis. Orphanet J Rare Dis. 2016 Apr;16(11):40.
  • Grisolia M, Sestito S, Ceravolo F, et al. The neuronal ceroid lipofuscinoses: A case-based overview. 2016;6:60–65.
  • Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs. 2017;5(9):727–740.
  • Kleine Holthaus S-M, Smith AJ, Mole SE, et al. editors. Gene therapy approaches to treat the neurodegeneration and visual failure in neuronal ceroid lipofuscinoses. Cham: Springer International Publishing; 2018. (Retinal Degenerative Diseases).
  • Kim SJ, Zhang Z, Sarkar C, et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin Invest. 2008 Sep;118(9):3075–3086.
  • Santavuori P, Haltia M, Rapola J, et al. Infantile type of so-called neuronal ceroid-lipofuscinosis. 1. A clinical study of 15 patients. J Neurol Sci. 1973 Mar;18(3):257–267.
  • Ramadan H, Al-Din AS, Ismail A, et al. Adult neuronal ceroid lipofuscinosis caused by deficiency in palmitoyl protein thioesterase 1. Neurology. 2007 Jan 30;68(5):387–388.
  • Jeung H, Thomann PA, Wolf RC. Novel gene variations in early-onset frontotemporal dementia with positive family history of neural ceroid lipofuscinosis-1. Neurol Clin Pract. 2015 Dec;5(6):484–487.
  • Delague V, Bareil C, Bouvagnet P, et al. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34-9qter in a large consanguineous lebanese family. Ann Neurol. 2001 Aug;50(2):250–253.
  • Sleat DE, Donnelly RJ, Lackland H, et al. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997 Sep 19;277(5333):1802–1805.
  • Steinfeld R, Heim P, von Gregory H, et al. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with cln2 mutations. Am J Med Genet. 2002 Nov 1;112(4):347–354.
  • Williams RE, Adams HR, Blohm M, et al. Management strategies for cln2 disease. Pediatr Neurol. 2017;69:102–112.
  • Dyke JP, Sondhi D, Voss HU, et al. Brain region-specific degeneration with disease progression in late infantile neuronal ceroid lipofuscinosis (cln2 disease). AJNR Am J Neuroradiol. 2016 Jun;37(6):1160–1169.
  • Dyke JP, Voss HU, Sondhi D, et al. Asymptotic neurodegeneration in cln2 disease assessed by mri cortical thickness histograms.. Mol Genet Metab. 2018;123:S41.
  • Nickel M, Simonati A, Jacoby D, et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (cln2) disease: an observational cohort study. Lancet Child Adolesc Health. 2018 Aug;2(8):582–590.
  • Ezaki J, Takeda-Ezaki M, Koike M, et al. Characterization of cln3p, the gene product responsible for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein. J Neurochem. 2003 Dec;87(5):1296–1308.
  • Golabek AA, Kida E, Walus M, et al. Cln3 protein regulates lysosomal ph and alters intracellular processing of alzheimer’s amyloid-beta protein precursor and cathepsin d in human cells. Mol Genet Metab. 2000 Jul;70(3):203–213.
  • Holopainen JM, Saarikoski J, Kinnunen PK, et al. Elevated lysosomal ph in neuronal ceroid lipofuscinoses (ncls). Eur J Biochem. 2001 Nov;268(22):5851–5856.
  • Ramirez-Montealegre D, Pearce DA. Defective lysosomal arginine transport in juvenile Batten disease. Hum Mol Genet. 2005 Dec 1;14(23):3759–3773.
  • Wu D, Liu J, Wu B, et al. The Batten disease gene cln3 confers resistance to endoplasmic reticulum stress induced by tunicamycin. Biochem Biophys Res Commun. 2014 Apr 25;447(1):115–120.
  • Marshall FJ, de Blieck EA, Mink JW, et al. A clinical rating scale for Batten disease: reliable and relevant for clinical trials. Neurology. 2005 Jul 26;65(2):275–279.
  • Perez-Poyato MS, Mila Recansens M, Ferrer Abizanda I, et al. Juvenile neuronal ceroid lipofuscinosis: clinical course and genetic studies in spanish patients. J Inherit Metab Dis. 2011 Oct;34(5):1083–1093.
  • Ostergaard JR. Juvenile neuronal ceroid lipofuscinosis (Batten disease): current insights. Degener Neurol Neuromuscul Dis. 2016;6:73–83.
  • Berkovic SF, Carpenter S, Andermann F, et al. Kufs’ disease: A critical reappraisal. Brain. 1988 Feb;111(Pt 1):27–62.
  • Nijssen PC, Ceuterick C, van Diggelen OP, et al. Autosomal dominant adult neuronal ceroid lipofuscinosis: A novel form of ncl with granular osmiophilic deposits without palmitoyl protein thioesterase 1 deficiency. Brain Pathol. 2003 Oct;13(4):574–581.
  • Arsov T, Smith KR, Damiano J, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in cln6. Am J Hum Genet. 2011 May 13;88(5):566–573.
  • Henderson MX, Wirak GS, Zhang YQ, et al. Neuronal ceroid lipofuscinosis with dnajc5/cspalpha mutation has ppt1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 2016 Apr;131(4):621–637.
  • Santavuori P, Rapola J, Sainio K, et al. A variant of jansky-bielschowsky disease. Neuropediatrics. 1982 Aug;13(3):135–141.
  • Jules F, Sauvageau E, Dumaresq-Doiron K, et al. Cln5 is cleaved by members of the spp/sppl family to produce a mature soluble protein. Exp Cell Res. 2017 Aug 1;357(1):40–50.
  • Simonati A, Williams RE, Nardocci N, et al. Phenotype and natural history of variant late infantile ceroid-lipofuscinosis 5. Dev Med Child Neurol. 2017 Aug;59(8):815–821.
  • Haddad SE, Khoury M, Daoud M, et al. Cln5 and cln8 protein association with ceramide synthase: biochemical and proteomic approaches. Electrophoresis. 2012 Dec;33(24):3798–3809.
  • Schulz A, Dhar S, Rylova S, et al. Impaired cell adhesion and apoptosis in a novel cln9 Batten disease variant. Ann Neurol. 2004 Sep;56(3):342–350.
  • Sharp JD, Wheeler RB, Parker KA, et al. Spectrum of cln6 mutations in variant late infantile neuronal ceroid lipofuscinosis. Hum Mutat. 2003 Jul;22(1):35–42.
  • Heine C, Koch B, Storch S, et al. Defective endoplasmic reticulum-resident membrane protein cln6 affects lysosomal degradation of endocytosed arylsulfatase a. J Biol Chem. 2004 May 21;279(21):22347–22352.
  • Gao H, Boustany RM, Espinola JA, et al. Mutations in a novel cln6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2002 Feb;70(2):324–335.
  • Kousi M, Siintola E, Dvorakova L, et al. Mutations in cln7/mfsd8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain. 2009 Mar;132(Pt 3):810–819.
  • Topcu M, Tan H, Yalnizoglu D, et al. Evaluation of 36 patients from turkey with neuronal ceroid lipofuscinosis: clinical, neurophysiological, neuroradiological and histopathologic studies. Turk J Pediatr. 2004 Jan-Mar;46(1):1–10.
  • Luzio JP. Cln8 safeguards lysosome biogenesis. Nat Cell Biol. 2018 Dec;20(12):1333–1335.
  • Di Ronza A, Bajaj L, Sharma J, et al. Cln8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat Cell Biol. 2018 Dec;20(12):1370–1377.
  • Mitchell WA, Wheeler RB, Sharp JD, et al. Turkish variant late infantile neuronal ceroid lipofuscinosis (cln7) may be allelic to cln8. Eur J Paediatr Neurol. 2001;5(Suppl):A:21–7.
  • Ranta S, Lehesjoki AE. Northern epilepsy, a new member of the ncl family. Neurol Sci. 2000;21(3 Suppl):S43–7.
  • Norman RM, Wood N. A congenital form of amaurotic family idiocy. J Neurol Psychiatry. 1941 Jul;4(3–4):175–190.
  • Brown NJ, Corner BD, Dodgson MC. A second case in the same family of congenital familial cerebral lipoidosis resembling amaurotic family idiocy. Arch Dis Child. 1954 Feb;29(143):48–54.
  • Humphreys S, Lake BD, Scholtz CL. Congenital amaurotic idiocy–a pathological, histochemical, biochemical and ultrastructural study. Neuropathol Appl Neurobiol. 1985 Nov-Dec;11(6):475–484.
  • Barohn RJ, Dowd DC, Kagan-Hallet KS. Congenital ceroid-lipofuscinosis. Pediatr Neurol. 1992 Jan-Feb;8(1):54–59.
  • Siintola E, Partanen S, Stromme P, et al. Cathepsin d deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006 Jun;129(Pt 6):1438–1445.
  • Steinfeld R, Reinhardt K, Schreiber K, et al. Cathepsin d deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006 Jun;78(6):988–998.
  • Hersheson J, Burke D, Clayton R, et al. Cathepsin d deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology. 2014 Nov 11;83(20):1873–1875.
  • Smith KR, Damiano J, Franceschetti S, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012 Jun 8;90(6):1102–1107.
  • Bras J, Verloes A, Schneider SA, et al. Mutation of the parkinsonism gene atp13a2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012 Jun 15;21(12):2646–2650.
  • Tsunemi T, Hamada K, Krainc D. Atp13a2/park9 regulates secretion of exosomes and alpha-synuclein. J Neurosci. 2014 Nov 12;34(46):15281–15287.
  • Farias FH, Zeng R, Johnson GS, et al. A truncating mutation in atp13a2 is responsible for adult-onset neuronal ceroid lipofuscinosis in tibetan terriers. Neurobiol Dis. 2011 Jun;42(3):468–474.
  • Wohlke A, Philipp U, Bock P, et al. A one base pair deletion in the canine atp13a2 gene causes exon skipping and late-onset neuronal ceroid lipofuscinosis in the tibetan terrier. PLoS Genet. 2011 Oct;7(10):e1002304.
  • Smith KR, Dahl HH, Canafoglia L, et al. Cathepsin f mutations cause type b kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013 Apr 1;22(7):1417–1423.
  • Wang C, Xu H, Yuan Y, et al. Novel compound heterozygous mutations causing kufs disease type b. Int J Neurosci. 2018 Jun;128(6):573–576.
  • Van Bogaert P, Azizieh R, Desir J, et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 2007 Jun;61(6):579–586.
  • Moen MN, Fjaer R, Hamdani EH, et al. Pathogenic variants in kctd7 perturb neuronal k+ fluxes and glutamine transport. Brain. 2016 Dec;139(Pt 12):3109–3120.
  • Metz KA, Teng X, Coppens I, et al. Kctd7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann Neurol. 2018 Nov;84(5):766–780.
  • Staropoli JF, Karaa A, Lim ET, et al. A homozygous mutation in kctd7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet. 2012 Jul 13;91(1):202–208.
  • Beck-Wodl S, Harzer K, Sturm M, et al. Homozygous tbc1 domain-containing kinase (tbck) mutation causes a novel lysosomal storage disease - a new type of neuronal ceroid lipofuscinosis (cln15)?. Acta Neuropathol Commun. 2018 Dec 27;6(1):145.
  • Cotman SL, Vrbanac V, Lebel LA, et al. Cln3(deltaex7/8) knock-in mice with the common jncl mutation exhibit progressive neurologic disease that begins before birth. Hum Mol Genet. 2002 Oct 15;11(22):2709–2721.
  • Sleat DE, Wiseman JA, El-Banna M, et al. A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the cln2 gene results in a loss of tripeptidyl-peptidase i activity and progressive neurodegeneration. J Neurosci. 2004 Oct 13;24(41):9117–9126.
  • Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull. 2012 May 1;88(1):43–57.
  • Bond M, Holthaus SM, Tammen I, et al. Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2013 Nov;1832(11):1842–1865.
  • Vaquer G, Riviere F, Mavris M, et al. Animal models for metabolic, neuromuscular and ophthalmological rare diseases. Nat Rev Drug Discov. 2013 Apr;12(4):287–305.
  • Staropoli JF, Haliw L, Biswas S, et al. Large-scale phenotyping of an accurate genetic mouse model of jncl identifies novel early pathology outside the central nervous system. PLoS One. 2012;7(6):e38310.
  • Katz ML, Johnson GC, Leach SB, et al. Extraneuronal pathology in a canine model of cln2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression. Gene Ther. 2017 Apr;24(4):215–223.
  • Jalanko A, Vesa J, Manninen T, et al. Mice with ppt1deltaex4 mutation replicate the incl phenotype and show an inflammation-associated loss of interneurons. Neurobiol Dis. 2005 Feb;18(1):226–241.
  • Miller JN, Kovacs AD, Pearce DA. The novel cln1(r151x) mouse model of infantile neuronal ceroid lipofuscinosis (incl) for testing nonsense suppression therapy. Hum Mol Genet. 2015 Jan 1;24(1):185–196.
  • Brooks DA, Muller VJ, Hopwood JJ. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol Med. 2006 Aug;12(8):367–373.
  • Sanders DN, Farias FH, Johnson GS, et al. A mutation in canine ppt1 causes early onset neuronal ceroid lipofuscinosis in a dachshund. Mol Genet Metab. 2010 Aug;100(4):349–356.
  • Kolicheski A, Barnes Heller HL, Arnold S, et al. Homozygous ppt1 splice donor mutation in a cane corso dog with neuronal ceroid lipofuscinosis. J Vet Intern Med. 2017 Jan;31(1):149–157.
  • Sondhi D, Hackett NR, Peterson DA, et al. Enhanced survival of the lincl mouse following cln2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther. 2007 Mar;15(3):481–491.
  • Chang M, Cooper JD, Sleat DE, et al. Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther. 2008 Apr;16(4):649–656.
  • Xu S, Wang L, El-Banna M, et al. Large-volume intrathecal enzyme delivery increases survival of a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther. 2011 Oct;19(10):1842–1848.
  • Geraets RD, Langin LM, Cain JT, et al. A tailored mouse model of cln2 disease: A nonsense mutant for testing personalized therapies. PLoS One. 2017;12(5):e0176526.
  • Nemtsova Y, Wiseman JA, El-Banna M, et al. Inducible transgenic expression of tripeptidyl peptidase 1 in a mouse model of late-infantile neuronal ceroid lipofuscinosis. PLoS One. 2018;13(2):e0192286.
  • Mahmood F, Fu S, Cooke J, et al. A zebrafish model of cln2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation. Brain. 2013 May;136(Pt 5):1488–1507.
  • Kovacs AD, Pearce DA. Finding the most appropriate mouse model of juvenile cln3 (Batten) disease for therapeutic studies: the importance of genetic background and gender. Dis Model Mech. 2015 Apr;8(4):351–361.
  • Sondhi D, Scott EC, Chen A, et al. Partial correction of the cns lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal cns administration of an adeno-associated virus serotype rh.10 vector expressing the human cln3 gene. Hum Gene Ther. 2014 Mar;25(3):223–239.
  • Bosch ME, Aldrich A, Fallet R, et al. Self-complementary aav9 gene delivery partially corrects pathology associated with juvenile neuronal ceroid lipofuscinosis (cln3). J Neurosci. 2016 Sep 14;36(37):9669–9682.
  • LA W, ER B, AV D, et al. Using patient-specific induced pluripotent stem cells and wild-type mice to develop a gene augmentation-based strategy to treat cln3-associated retinal degeneration. Hum Gene Ther. 2016 Oct;27(10):835–846.
  • Groh J, Berve K, Martini R. Fingolimod and teriflunomide attenuate neurodegeneration in mouse models of neuronal ceroid lipofuscinosis. Mol Ther. 2017 Aug 2;25(8):1889–1899.
  • Kerns S, Arnold M, Aldrich A, et al. An improved, novel, systemically administered aav gene therapy for treatment of cln3 juvenile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2019;126(2):S82–S83.
  • Kerns S, Daum J, Bosch ME, et al. Intravenous administration of cln3 gene therapy for juvenile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2018;123:S15–S153.
  • Wager K, Zdebik AA, Fu S, et al. Neurodegeneration and epilepsy in a zebrafish model of cln3 disease (Batten disease). PLoS One. 2016;11(6):e0157365.
  • Yao X, Liu X, Zhang Y, et al. Gene therapy of adult neuronal ceroid lipofuscinoses with crispr/cas9 in zebrafish. Hum Gene Ther. 2017 Jul;28(7):588–597.
  • Frugier T, Mitchell NL, Tammen I, et al. A new large animal model of cln5 neuronal ceroid lipofuscinosis in borderdale sheep is caused by a nucleotide substitution at a consensus splice site (c.571+1g>a) leading to excision of exon 3. Neurobiol Dis. 2008 Feb;29(2):306–315.
  • Jolly RD, Arthur DG, Kay GW, et al. Neuronal ceroid-lipofuscinosis in borderdale sheep. N Z Vet J. 2002 Oct;50(5):199–202.
  • Best HL, Neverman NJ, Wicky HE, et al. Characterisation of early changes in ovine cln5 and cln6 Batten disease neural cultures for the rapid screening of therapeutics. Neurobiol Dis. 2017;100:62–74.
  • Mitchell NL, Russell KN, Wellby MP, et al. Longitudinal in vivo monitoring of the cns demonstrates the efficacy of gene therapy in a sheep model of cln5 Batten disease. Mol Ther. 2018 Oct 3;26(10):2366–2378.
  • Melville SA, Wilson CL, Chiang CS, et al. A mutation in canine cln5 causes neuronal ceroid lipofuscinosis in border collie dogs. Genomics. 2005 Sep;86(3):287–294.
  • Gilliam D, Kolicheski A, Johnson GS, et al. Golden retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in cln5. Mol Genet Metab. 2015 Jun-Jul;115(2–3):101–109.
  • Kleine Holthaus SM, Ribeiro J, Abelleira-Hervas L, et al. Prevention of photoreceptor cell loss in a cln6(nclf) mouse model of Batten disease requires cln6 gene transfer to bipolar cells. Mol Ther. 2018 May 2;26(5):1343–1353.
  • Katz ML, Farias FH, Sanders DN, et al. A missense mutation in canine cln6 in an australian shepherd with neuronal ceroid lipofuscinosis. J Biomed Biotechnol. 2011;2011:198042.
  • Tammen I, Cook RW, Nicholas FW, et al. Neuronal ceroid lipofuscinosis in australian merino sheep: A new animal model. Eur J Paediatr Neurol. 2001;5(Suppl):A:37–41.
  • Damme M, Brandenstein L, Fehr S, et al. Gene disruption of mfsd8 in mice provides the first animal model for cln7 disease. Neurobiol Dis. 2014;65:12–24.
  • Jankowiak W, Brandenstein L, Dulz S, et al. Retinal degeneration in mice deficient in the lysosomal membrane protein cln7. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4989–4998.
  • Brandenstein L, Schweizer M, Sedlacik J, et al. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein cln7. Hum Mol Genet. 2016 Feb 15;25(4):777–791.
  • Faller KM, Bras J, Sharpe SJ, et al. The chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis cln7 disease?. J Neurosci Res. 2016 Apr;94(4):339–347.
  • McBride JL, Neuringer M, Ferguson B, et al. Discovery of a cln7 model of Batten disease in non-human primates. Neurobiol Dis. 2018;119:65–78.
  • Katz ML, Khan S, Awano T, et al. A mutation in the cln8 gene in english setter dogs with neuronal ceroid-lipofuscinosis. Biochem Biophys Res Commun. 2005 Feb 11;327(2):541–547.
  • Hirz M, Drogemuller M, Schanzer A, et al. Neuronal ceroid lipofuscinosis (ncl) is caused by the entire deletion of cln8 in the alpenlandische dachsbracke dog. Mol Genet Metab. 2017 Mar;120(3):269–277.
  • Lingaas F, Guttersrud OA, Arnet E, et al. Neuronal ceroid lipofuscinosis in salukis is caused by a single base pair insertion in cln8. Anim Genet. 2018 Feb;49(1):52–58.
  • Ranta S, Zhang Y, Ross B, et al. The neuronal ceroid lipofuscinoses in human epmr and mnd mutant mice are associated with mutations in cln8. Nat Genet. 1999 Oct;23(2):233–236.
  • Saftig P, Hetman M, Schmahl W, et al. Mice deficient for the lysosomal proteinase cathepsin d exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. Embo J. 1995 Aug 1;14(15):3599–3608.
  • Tyynela J, Sohar I, Sleat DE, et al. A mutation in the ovine cathepsin d gene causes a congenital lysosomal storage disease with profound neurodegeneration. Embo J. 2000 Jun 15;19(12):2786–2792.
  • Awano T, Katz ML, O’Brien DP, et al. A mutation in the cathepsin d gene (ctsd) in american bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab. 2006 Apr;87(4):341–348.
  • Follo C, Ozzano M, Montalenti C, et al. Knockdown of cathepsin d in zebrafish fertilized eggs determines congenital myopathy. Biosci Rep. 2013 Apr 4;33(2):e00034.
  • Kayasuga Y, Chiba S, Suzuki M, et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res. 2007 Dec 28;185(2):110–118.
  • Yin F, Banerjee R, Thomas B, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010 Jan 18;207(1):117–128.
  • Yin F, Dumont M, Banerjee R, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: A mouse model of frontotemporal dementia. Faseb J. 2010 Dec;24(12):4639–4647.
  • Chitramuthu BP, Baranowski DC, Kay DG, et al. Progranulin modulates zebrafish motoneuron development in vivo and rescues truncation defects associated with knockdown of survival motor neuron 1. Mol Neurodegener. 2010 Oct 14;5:41.
  • Laird AS, Van Hoecke A, De Muynck L, et al. Progranulin is neurotrophic in vivo and protects against a mutant tdp-43 induced axonopathy. PLoS One. 2010 Oct 13;5(10):e13368.
  • Schultheis PJ, Fleming SM, Clippinger AK, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited alpha-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet. 2013 May 15;22(10):2067–2082.
  • Hersrud SL, Geraets RD, Weber KL, et al. Plasma biomarkers for neuronal ceroid lipofuscinosis. Febs J. 2016 Feb;283(3):459–471.
  • Sleat DE, Tannous A, Sohar I, et al. Proteomic analysis of brain and cerebrospinal fluid from the three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J Proteome Res. 2017 Oct 6;16(10):3787–3804.
  • Stamberger H, Nikanorova M, Willemsen MH, et al. Stxbp1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology. 2016 Mar 8;86(10):954–962.
  • Sindelar M, Dyke JP, Deeb RS, et al. Untargeted metabolite profiling of cerebrospinal fluid uncovers biomarkers for severity of late infantile neuronal ceroid lipofuscinosis (cln2, Batten disease). Sci Rep. 2018 Oct 15;8(1):15229.
  • Lebrun AH, Moll-Khosrawi P, Pohl S, et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of cln3 disease. Mol Med. 2011;17(11–12):1253–1261.
  • Timm D, Cain JT, Geraets RD, et al. Searching for novel biomarkers using a mouse model of cln3-Batten disease. PLoS One. 2018;13(8):e0201470.
  • Abbott NJ. Blood-brain barrier structure and function and the challenges for cns drug delivery. J Inherit Metab Dis. 2013 May;36(3):437–449.
  • Naso MF, Tomkowicz B, Perry WL 3rd, et al. Adeno-associated virus (aav) as a vector for gene therapy. BioDrugs. 2017 Aug;31(4):317–334.
  • Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018 May;20(5):e3015.
  • Colella P, Ronzitti G, Mingozzi F. Emerging issues in aav-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018 Mar;16(8):87–104.
  • Desnick RJ, Schuchman EH. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet. 2012;13:307–335.
  • Giugliani R, Vairo F, Kubaski F, et al. Neurological manifestations of lysosomal disorders and emerging therapies targeting the cns. Lancet Child Adolesc Health. 2018 Jan;2(1):56–68.
  • Solomon M, Muro S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev. 2017 Sep;1(118):109–134.
  • Pardridge WM. Csf, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv. 2016 Jul;13(7):963–975.
  • US Food and Drug Administration. FDA approves first treatment for a form of Batten disease. 2018; [cited 2019 Jun 20]. Available from https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-form-Batten-disease.
  • Kruer MC, Pearce DA, Orchard PJ, et al. Prospects for stem cell therapy in neuronal ceroid lipofuscinosis. Regen Med. 2013 Sep;8(5):527–529.
  • Bayever E, Ladisch S, Philippart M, et al. Bone-marrow transplantation for metachromatic leucodystrophy. Lancet. 1985 Aug 31;2(8453):471–473.
  • Krivit W, Aubourg P, Shapiro E, et al. Bone marrow transplantation for globoid cell leukodystrophy, adrenoleukodystrophy, metachromatic leukodystrophy, and hurler syndrome. Curr Opin Hematol. 1999 Nov;6(6):377–382.
  • Asheuer M, Pflumio F, Benhamida S, et al. Human cd34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3557–3562.
  • Biffi A, Capotondo A, Fasano S, et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest. 2006 Nov;116(11):3070–3082.
  • Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006 Jun 29;441(7097):1094–1096.
  • Aboody K, Capela A, Niazi N, et al. Translating stem cell studies to the clinic for cns repair: current state of the art and the need for a rosetta stone. Neuron. 2011 May 26;70(4):597–613.
  • Jin HK, Carter JE, Huntley GW, et al. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002 May;109(9):1183–1191.
  • Chaudhuri A, Bhattacharya N. Human neural stem cell transplants in neurological disorders: current trends and future options. In: Bhattacharya N, Stubblefield P, editors. Human fetal tissue transplantation. London: Springer London; 2013. p. 265–268.
  • Sevin C, Aubourg P, Cartier N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis. 2007 Apr;30(2):175–183.
  • Bredius RG, Laan LA, Lankester AC, et al. Early marrow transplantation in a pre-symptomatic neonate with late infantile metachromatic leukodystrophy does not halt disease progression. Bone Marrow Transplant. 2007 Mar;39(5):309–310.
  • Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013 Aug 23;341(6148):1233158.
  • Morgan RA, Gray D, Lomova A, et al. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell. 2017 Nov 2;21(5):574–590.
  • Willingham MC, Pastan IH, Sahagian GG, et al. Morphologic study of the internalization of a lysosomal enzyme by the mannose 6-phosphate receptor in cultured chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6967–6971.
  • Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003 Mar;4(3):202–212.
  • Beck M. Therapy for lysosomal storage disorders. IUBMB Life. 2010 Jan;62(1):33–40.
  • Deverman BE, Ravina BM, Bankiewicz KS, et al. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov. 2018 Sep;17(9):641–659.
  • Hudry E, Vandenberghe LH. Therapeutic aav gene transfer to the nervous system: A clinical reality. Neuron. 2019 Apr 3;102(1):263.
  • Auricchio A, Kobinger G, Anand V, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. 2001 Dec 15;10(26):3075–3081.
  • Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of aav serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One. 2013;8(9):e76310.
  • Pillay S, Carette JE. Host determinants of adeno-associated viral vector entry. Curr Opin Virol. 2017 Jun;24:124–131.
  • Hughes SM, Hope KM, Xu JB, et al. Inhibition of storage pathology in prenatal cln5-deficient sheep neural cultures by lentiviral gene therapy. Neurobiol Dis. 2014;62:543–550.
  • Palmer DN, Neverman NJ, Chen JZ, et al. Recent studies of ovine neuronal ceroid lipofuscinoses from barn, the Batten animal research network. Biochim Biophys Acta. 2015 Oct;1852(10Pt B):2279–2286.
  • Kinarivala N, Trippier PC. Progress in the development of small molecule therapeutics for the treatment of neuronal ceroid lipofuscinoses (ncls). J Med Chem. 2016 May 26;59(10):4415–4427.
  • Zhang Z, Butler JD, Levin SW, et al. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat Med. 2001 Apr;7(4):478–484.
  • Hofmann SL, Lee LA, Lu JY, et al. Palmitoyl-protein thioesterase and the molecular pathogenesis of infantile neuronal ceroid lipofuscinosis. Neuropediatrics. 1997 Feb;28(1):27–30.
  • Rogawski MA. Revisiting ampa receptors as an antiepileptic drug target. Epilepsy Curr. 2011 Mar;11(2):56–63.
  • French JA, Krauss GL, Biton V, et al. Adjunctive perampanel for refractory partial-onset seizures: randomized phase iii study 304. Neurology. 2012 Aug 7;79(6):589–596.
  • Kovacs AD, Pearce DA. Attenuation of ampa receptor activity improves motor skills in a mouse model of juvenile Batten disease. Exp Neurol. 2008 Jan;209(1):288–291.
  • Kovacs AD, Saje A, Wong A, et al. Temporary inhibition of ampa receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease. Neuropharmacology. 2011 Feb-Mar;60(2–3):405–409.
  • Kovacs AD, Weimer JM, Pearce DA. Selectively increased sensitivity of cerebellar granule cells to ampa receptor-mediated excitotoxicity in a mouse model of Batten disease. Neurobiol Dis. 2006 Jun;22(3):575–585.
  • Dhar S, Bitting RL, Rylova SN, et al. Flupirtine blocks apoptosis in Batten patient lymphoblasts and in human postmitotic cln3- and cln2-deficient neurons. Ann Neurol. 2002 Apr;51(4):448–466.
  • Makoukji J, Saadeh F, Mansour KA, et al. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann Clin Transl Neurol. 2018 Sep;5(9):1089–1103.
  • Park JW, Woo KJ, Lee JT, et al. Resveratrol induces pro-apoptotic endoplasmic reticulum stress in human colon cancer cells. Oncol Rep. 2007 Nov;18(5):1269–1273.
  • Ghosh A, Rangasamy SB, Modi KK, et al. Gemfibrozil, food and drug administration-approved lipid-lowering drug, increases longevity in mouse model of late infantile neuronal ceroid lipofuscinosis. J Neurochem. 2017 May;141(3):423–435.
  • Genetic Engeinnering and Biotechnology News. Sanofi-aventis’ teriflunomide comes up trumps in two-year phase III MS trial. 2019.[cited 2019 Aug 18]. Available from: https://www.genengnews.com/news/sanofi-aventis-teriflunomide-comes-up-trumps-in-two-year-phase-iii-ms-trial/81244075.
  • Hu J, Lu JY, Wong AM, et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2012 Sep;107(1–2):213–221.
  • Lu JY, Nelvagal HR, Wang L, et al. Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2015 Sep-Oct;116(1–2):98–105.
  • Tamaki SJ, Jacobs Y, Dohse M, et al. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell. 2009 Sep 4;5(3):310–319.
  • Selden NR, Al-Uzri A, Huhn SL, et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr. 2013 Jun;11(6):643–652.
  • Griffey M, Bible E, Vogler C, et al. Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis. 2004 Jul;16(2):360–369.
  • Griffey MA, Wozniak D, Wong M, et al. Cns-directed aav2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther. 2006 Mar;13(3):538–547.
  • Shyng C, Nelvagal HR, Dearborn JT, et al. Synergistic effects of treating the spinal cord and brain in cln1 disease. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5920–E5929.
  • Rozenberg A, Lykken E, Spratt K, et al. Combination dosing of cln1 gene therapy extends lifespan in a mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2018;123:S124.
  • Griffey M, Macauley SL, Ogilvie JM, et al. Aav2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther. 2005 Sep;12(3):413–421.
  • Macauley SL, Roberts MS, Wong AM, et al. Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Ann Neurol. 2012 Jun;71(6):797–804.
  • Roberts MS, Macauley SL, Wong AM, et al. Combination small molecule ppt1 mimetic and cns-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J Inherit Metab Dis. 2012 Sep;35(5):847–857.
  • Klawe C, Maschke M. Flupirtine: pharmacology and clinical applications of a nonopioid analgesic and potentially neuroprotective compound. Expert Opin Pharmacother. 2009;10(9):1495–1500.
  • Gavin M, Wen GY, Messing J, et al. Substrate reduction therapy in four patients with milder cln1 mutations and juvenile-onset Batten disease using cysteamine bitartrate. JIMD Rep. 2013;11:87–92.
  • Levin SW, Baker EH, Zein WM, et al. Oral cysteamine bitartrate and n-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: A pilot study. Lancet Neurol. 2014 Aug;13(8):777–787.
  • Wiseman JA, Meng Y, Nemtsova Y, et al. Chronic enzyme replacement to the brain of a late infantile neuronal ceroid lipofuscinosis mouse has differential effects on phenotypes of disease. Mol Ther Methods Clin Dev. 2017 Mar;17(4):204–212.
  • Katz ML, Coates JR, Sibigtroth CM, et al. Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (cln2 disease). J Neurosci Res. 2014 Nov;92(11):1591–1598.
  • Sinclair J, Whiting R, Robinson G, et al. Intravitreal enzyme replacement therapy attenuates retinal disease progression in a canine model of neuronal ceroid lipofuscinosis type 2 (cln2). Mol Genet Metab. 2018;123(2):S132.
  • Schulz A, Ajayi T, Specchio N, et al. Study of intraventricular cerliponase alfa for cln2 disease. N Engl J Med. 2018 May 17;378(20):1898–1907.
  • Cherukuri A, Cahan H, de Hart G, et al. Immunogenicity to cerliponase alfa intracerebroventricular enzyme replacement therapy for cln2 disease: results from a phase 1/2 study. Clin Immunol. 2018;197:68–76.
  • BioMarin Pharmaceutical Inc. Biomarin announces ongoing study demonstrates durable treatment benefit from brineura® (cerliponase alfa) for 3 years. 2019 [cited 2019 Aug 20]. Available from: https://www.prnewswire.com/news-releases/biomarin-announces-ongoing-study-demonstrates-durable-treatment-benefit-from-brineura-cerliponase-alfa-for-3-years-300792075.html.
  • Tracy CJ, Whiting RE, Pearce JW, et al. Intravitreal implantation of tpp1-transduced stem cells delays retinal degeneration in canine cln2 neuronal ceroid lipofuscinosis. Exp Eye Res. 2016;152:77–87.
  • Haskell RE, Hughes SM, Chiorini JA, et al. Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, tpp-i to the mouse central nervous system. Gene Ther. 2003 Jan;10(1):34–42.
  • Passini MA, Dodge JC, Bu J, et al. Intracranial delivery of cln2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci. 2006 Feb 1;26(5):1334–1342.
  • Sondhi D, Johnson L, Purpura K, et al. Long-term expression and safety of administration of aavrh.10hcln2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Methods. 2012 Oct;23(5):324–335.
  • Sondhi D, Peterson DA, Edelstein AM, et al. Survival advantage of neonatal cns gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp Neurol. 2008 Sep;213(1):18–27.
  • Katz ML, Tecedor L, Chen Y, et al. Aav gene transfer delays disease onset in a tpp1-deficient canine model of the late infantile form of Batten disease. Sci Transl Med. 2015 Nov 11;7(313):313ra180.
  • Worgall S, Sondhi D, Hackett NR, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by cns administration of a serotype 2 adeno-associated virus expressing cln2 cdna. Hum Gene Ther. 2008 May;19(5):463–474.
  • Souweidane MM, Fraser JF, Arkin LM, et al. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr. 2010 Aug;6(2):115–122.
  • Kim K, Kleinman HK, Lee HJ, et al. Safety and potential efficacy of gemfibrozil as a supportive treatment for children with late infantile neuronal ceroid lipofuscinosis and other lipid storage disorders. Orphanet J Rare Dis. 2017 Jun 17;12(1):113.
  • Burnight ER, Giacalone JC, Cooke JA, et al. Crispr-cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res. 2018;65:28–49.
  • Aldrich A, Bosch ME, Fallet R, et al. Efficacy of phosphodiesterase-4 inhibitors in juvenile Batten disease (cln3). Ann Neurol. 2016 Dec;80(6):909–923.
  • Cialone J, Augustine EF, Newhouse N, et al. Parent-reported benefits of flupirtine in juvenile neuronal ceroid lipofuscinosis (Batten disease; cln3) are not supported by quantitative data. J Inherit Metab Dis. 2011 Oct;34(5):1075–1081.
  • Palmieri M, Pal R, Nelvagal HR, et al. Mtorc1-independent tfeb activation via akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017 Feb 6;8:14338.
  • Aberg L, Talling M, Harkonen T, et al. Intermittent prednisolone and autoantibodies to gad65 in juvenile neuronal ceroid lipofuscinosis. Neurology. 2008 Apr 1;70(14):1218–1220.
  • Mitchison HM, Bernard DJ, Greene ND, et al. Targeted disruption of the cln3 gene provides a mouse model for Batten disease. The Batten mouse model consortium [corrected]. Neurobiol Dis. 1999 Oct;6(5):321–334.
  • Chattopadhyay S, Ito M, Cooper JD, et al. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol Genet. 2002 Jun 1;11(12):1421–1431.
  • Seehafer SS, Ramirez-Montealegre D, Wong AM, et al. Immunosuppression alters disease severity in juvenile Batten disease mice. J Neuroimmunol. 2011 Jan;230(1–2):169–172.
  • Chang JW, Choi H, Cotman SL, et al. Lithium rescues the impaired autophagy process in cbcln3(deltaex7/8/deltaex7/8) cerebellar cells and reduces neuronal vulnerability to cell death via impase inhibition. J Neurochem. 2011 Feb;116(4):659–668.
  • Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005 Sep 26;170(7):1101–1111.
  • Augustine EF, Beck CA, Adams HR, et al. Short-term administration of mycophenolate is well-tolerated in cln3 disease (juvenile neuronal ceroid lipofuscinosis). JIMD Rep. 2019;43:117–124.
  • Drack AV, Mullins RF, Pfeifer WL, et al. Immunosuppressive treatment for retinal degeneration in juvenile neuronal ceroid lipofuscinosis (juvenile Batten disease). Ophthalmic Genet. 2015;36(4):359–364.
  • Mirza M, Volz C, Karlstetter M, et al. Progressive retinal degeneration and glial activation in the cln6 (nclf) mouse model of neuronal ceroid lipofuscinosis: A beneficial effect of dha and curcumin supplementation. PLoS One. 2013;8(10):e75963.
  • Cain JT, Likhite S, Whitel K, et al., editors. Testing safety and efficacy of aav9-cln6 gene therapy in a mouse model of cln6-Batten disease. The 15th International Conference on Neuronal Ceriod Lipofuscinosis (Batten Disease); 2016 Oct 5–8; Boston.
  • Likhite S, Timm D, White KA, et al. From bench to bedside: gene therapy for Batten (cln6) disease. Mol Ther. 2018;26:307–308.
  • Weimer J, Cain J, Johnson T, et al. Promise of aav9 gene therapy in the treatment of Batten disease: systematic approach in therapy design reduces pathological and behavioral deficits and prolongs survival in mouse models of cln3-, cln6-, and cln8-Batten disease. Mol Genet Metab. 2019;126:S151.
  • Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017 Nov;28(11):988–1003.
  • Byrne BJ. Safety first: perspective on patient-centered development of aav gene therapy products. Mol Ther. 2018 Mar 7;26(3):669–671.
  • Amicus Therapeutics. Amicus establishes gene therapy pipeline for lysosomal storage disorders (lsds) conference call and webcast. 2018; [cited 2019 Aug 20]. Available from: http://ir.amicusrx.com/static-files/c62086c7-1aae-4e0e-83d2-1a2e4ebc65cc.
  • Amicus Therapeutics. Amicus data overview at 15th annual worldsymposium. [cited 2019 Aug 23]. 2019; Available from: http://ir.amicusrx.com/static-files/e5022131-ff0b-4b03-960c-de1f512cce8b.
  • Mitchell N Longitudinal studies and the development of gene therapy for ovine neuronal ceroid lipofuscinoses 2016.
  • Kay GW, Palmer DN. Chronic oral administration of minocycline to sheep with ovine cln6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression. J Neuroinflammation. 2013 Jul 30;10:97.
  • Yu TW, Hu C, Kim J, et al., editors. Pgmnr 3570: patient-customized oligonucleotide therapy for an ultra-rare genetic disease. American Society of Human Genetics; 2018; San Diego, Oct 16–20.
  • Deeg HJ, Shulman HM, Albrechtsen D, et al. Batten’s disease: failure of allogeneic bone marrow transplantation to arrest disease progression in a canine model. Clin Genet. 1990 Apr;37(4):264–270.
  • Elger B, Schneider M, Winter E, et al. Optimized synthesis of ampa receptor antagonist zk 187638 and neurobehavioral activity in a mouse model of neuronal ceroid lipofuscinosis. ChemMedChem. 2006 Oct;1(10):1142–1148.
  • Cooper JD, Messer A, Feng AK, et al. Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment. J Neurosci. 1999 Apr 1;19(7):2556–2567.
  • Zeman RJ, Peng H, Etlinger JD. Clenbuterol retards loss of motor function in motor neuron degeneration mice. Exp Neurol. 2004 Jun;187(2):460–467.
  • Shevtsova Z, Garrido M, Weishaupt J, et al. Cns-expressed cathepsin d prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. Am J Pathol. 2010 Jul;177(1):271–279.
  • Pike LS, Tannous BA, Deliolanis NC, et al. Imaging gene delivery in a mouse model of congenital neuronal ceroid lipofuscinosis. Gene Ther. 2011 Dec;18(12):1173–1178.
  • Arrant AE, Onyilo VC, Unger DE, et al. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018 Feb 28;38(9):2341–2358.
  • Amado DA, Rieders JM, Diatta F, et al. Aav-mediated progranulin delivery to a mouse model of progranulin deficiency causes t cell-mediated toxicity. Mol Ther. 2019 Feb 6;27(2):465–478.
  • Abeona Therapeutics. Pipeline 2019; [cited 2019 Jun 20]. Available from: https://www.abeonatherapeutics.com/research-development#pipeline.
  • Amicus Therapeutics. Programs and pipeline 2018; [cited 2019 Jun 20]. Available from: https://www.amicusrx.com/programs-pipeline.
  • Biomarin. Products/pipeline 2019; [cited 2019 Jun 20]. Available from: https://www.biomarin.com/products/brineura.
  • SBIRSource. Development of n-tert-(butyl)hydroxylamine (NtBuHA) as a therapeutic agent for treating Infantile Neuronal Ceroid Lipofuscinosis (ONCL). DHHS. 2019; [cited 2019 Jun 20]. Available from: https://sbirsource.com/sbir/awards/167461-development-of-n-tert-butyl-hydroxylamine-ntbuha-as-a-therapeutic-agent-for-treating-infantile-neuronal-ceroid-lipofuscinosis-incl.
  • Polaryx Therapeutics P The pipeline 2019; [cited 2019 Jun 20]. Available from: https://www.polaryx.com/pipeline.html.
  • Regenxbio. Rgx-181 is our product candidate for the treatment of late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2 disease), a form of Batten disease. 2018; [cited 2019 Jun 20]. https://www.regenxbio.com/rgx-181.
  • Spark Therapeutics. Our scientific platform and programs 2018; [cited 2019 Jun 20]. http://sparktx.com/scientific-platform-programs.
  • Rosenberg JB, Kaplitt MG, De BP, et al. Aavrh.10-mediated apoe2 central nervous system gene therapy for apoe4-associated alzheimer’s disease. Hum Gene Ther Clin Dev. 2018 Mar;29(1):24–47.
  • Smalley E. First aav gene therapy poised for landmark approval. Nat Biotechnol. 2017 Nov 9;35(11):998–999.
  • US Food and Administration. FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. 2019; [cited 2019 Jun 20]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease.
  • Darrow JJ. Luxturna: fda documents reveal the value of a costly gene therapy. Drug Discov Today. 2019 Apr;24(4):949–954.
  • Smith A Brineura hit with nice rejection. [cited 2019 Sep 18]. Available from: http://www.pharmatimes.com/news/brineura_hit_with_nice_rejection_1279019:PharmaTimes online; 2019.
  • Parsons L Nice approves biomarin’s brineura after initial setback. PMLive. 2019; [last accessed 2019 Sep 18]. Available from: https://www.pmlive.com/pharma_news/nice_approves_biomarins_brineura_after_initial_setback_1301440
  • Lukacs Z, Nickel M, Murko S, et al. Validity of a rapid and simple fluorometric tripeptidyl peptidase 1 (tpp1) assay using dried blood specimens to diagnose cln2 disease. Clin Chim Acta. 2019;492:69–71.
  • Mathavarajah S, McLaren MD, Huber RJ. Cln3 function is linked to osmoregulation in a dictyostelium model of Batten disease. Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3559–3573.
  • Somogyi A, Petcherski A, Beckert B, et al. Altered expression of ganglioside metabolizing enzymes results in gm3 ganglioside accumulation in cerebellar cells of a mouse model of juvenile neuronal ceroid lipofuscinosis. Int J Mol Sci. 2018 Feb 22;19(2):625.
  • NCBI. Cln6 cln6 transmembrane er protein [homo sapiens (human)] NLM. 2019; [cited 2019 Sep 18]. Available from: https://www.ncbi.nlm.nih.gov/gene/54982
  • Danyukova T, Ariunbat K, Thelen M, et al. Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mtor reactivation. Hum Mol Genet. 2018 May 15;27(10):1711–1722.
  • Batten Disease Family Association (BDFA). CLN10 disease, congenital, neonatal and late infantile. 2014; [cited 2019 Jun 20]. Available from: http://www.bdfa-uk.org.uk/cln10-disease-congenital-neonatal-and-late-infantile.
  • Kohan R, Cismondi IA, Oller-Ramirez AM, et al. Therapeutic approaches to the challenge of neuronal ceroid lipofuscinoses. Curr Pharm Biotechnol. 2011 Jun;12(6):867–883.
  • Kollmann K, Uusi-Rauva K, Scifo E, et al. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013 Nov;1832(11):1866–1881.
  • Miller WP, Rothman SM, Nascene D, et al. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: the largest single-institution cohort report. Blood. 2011 Aug 18;118(7):1971–1978.
  • Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders. Prog Brain Res. 2017;230:99–132.
  • Aubourg P. Gene therapy for leukodystrophy: progress, challenges and opportunities. Expert Opin Orphan Drugs. 2016;4(4):359–367.
  • Choudhury SR, Hudry E, Maguire CA, et al. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017 Jul;1(120):63–80.
  • Herzog CD, Bishop KM, Brown L, et al. Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. Drug Deliv Transl Res. 2011 Oct;1(5):361–382.
  • Hocquemiller M, Giersch L, Audrain M, et al. Adeno-associated virus-based gene therapy for cns diseases. Hum Gene Ther. 2016 Jul;27(7):478–496.
  • Janson C, McPhee S, Bilaniuk L, et al. Clinical protocol. Gene therapy of canavan disease: aav-2 vector for neurosurgical delivery of aspartoacylase gene (aspa) to the human brain. Hum Gene Ther. 2002 Jul 20;13(11):1391–1412.
  • Janson CG, Romanova LG, Leone P, et al. Comparison of endovascular and intraventricular gene therapy with adeno-associated virus-alpha-l-iduronidase for hurler disease. Neurosurgery. 2014 Jan;74(1):99–111.
  • Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (aav) borne gad gene for parkinson’s disease: an open label, phase i trial. Lancet. 2007 Jun 23;369(9579):2097–2105.
  • Lau AA, Hemsley KM. Adeno-associated viral gene therapy for mucopolysaccharidoses exhibiting neurodegeneration. J Mol Med (Berl). 2017 Oct;95(10):1043–1052.
  • Leone P, Shera D, McPhee SW, et al. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med. 2012 Dec 19;4(165):165ra163.
  • Rafii MS, Baumann TL, Bakay RA, et al. A phase1 study of stereotactic gene delivery of aav2-ngf for alzheimer’s disease. Alzheimers Dement. 2014 Sep;10(5):571–581.
  • Thwaite R, Pages G, Chillon M, et al. Aavrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy. Gene Ther. 2015 Feb;22(2):196–201.
  • Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: A continued challenge. Gene Ther. 2008 Jun;15(11):808–816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.