72
Views
0
CrossRef citations to date
0
Altmetric
Review

Putative adjunct therapies to target mitochondrial dysfunction and oxidative stress in phenylketonuria, lysosomal storage disorders and peroxisomal disorders

, , &
Pages 431-444 | Received 01 Aug 2020, Accepted 23 Oct 2020, Published online: 26 Nov 2020

References

  • Stepien KM, Heaton R, Rankin S, et al. Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med. 2017;6(7):71.
  • Uttara B, Singh AV, Zamboni P, et al. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.
  • Therond P. Oxidative stress and damages to biomolecules (lipids, proteins, DNA). Ann Pharm Fr. 2006 Nov;64(6):383–389.
  • Sunday O, Adekunle M, Temitope O, et al. Alteration in antioxidants level and lipid peroxidation of patients with neurodegenerative diseases {Alzheimer’s disease and Parkinson disease} [Original Article]. Int J Nutr Pharmacol Neurol Dis. 2014 July 1;4(3):146–152.
  • Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstetrics Gynaecol. 2011;25(3):287–299.
  • Pelicano H, Lu W, Zhou Y, et al. Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 2009;69(6):2375–2383.
  • Kolker S, Schwab M, Horster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003 Nov 28;278(48):47388–47393.
  • Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–223.
  • Ogura S, Shimosawa T. Oxidative stress and organ damages. Curr Hypertens Rep. 2014 Aug;16(8):452.
  • New Prognostic LL. Biomarkers of mitochondrial oxidative stress in septic patients [Review Article]. Arch Crit Care Med. 2015;1(2):e3125.
  • Reddy PH, Manczak M, Yin X, et al. Protective effects of indian spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–866.
  • Martinez-Cruz F, Pozo D, Osuna C, et al. Oxidative stress induced by phenylketonuria in the rat: prevention by melatonin, vitamin E, and vitamin C. J Neurosci Res. 2002;69(4):550–558.
  • Zhou Y-A, Ma Y-X, Zhang Q-B, et al. Mutations of the phenylalanine hydroxylase gene in patients with phenylketonuria in Shanxi, China. Genet Mol Biol. 2012;35(4):709–713.
  • Vockley J, Andersson HC, Antshel KM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188–200.
  • Krause W, Halminski M, McDonald L, et al. Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria. A model for the study of phenylalanine and brain function in man. J Clin Invest. 1985 Jan;75(1):40–48.
  • Pietz J. Neurological aspects of adult phenylketonuria. Curr Opin Neurol. 1998;11(6):679–688.
  • Targum SD, Lang W. Neurobehavioral problems associated with phenylketonuria. Psychiatry. 2010;7(12):29–32.
  • Vist GE, Fronsdal KB, Johansen M, et al. NIPH systematic reviews: executive summaries. Newborn screening for inborn errors of metabolism. Oslo, Norway: Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH) Copyright (c)2007 by The Norwegian Institute of Public Health (NIPH); 2007.
  • Das AM, Goedecke K, Meyer U, et al. Dietary habits and metabolic control in adolescents and young adults with phenylketonuria: self-imposed protein restriction may be harmful. JIMD Rep. 2014;13:149–158.
  • Ding XQ, Fiehler J, Kohlschütter B, et al. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn Reson Imaging. 2008;27(5):998–1004.
  • Vieira EN, Maia HSF, Monteiro CB, et al. Quality of life and adherence to treatment in early-treated Brazilian phenylketonuria pediatric patients. Braz J Med Biol Res = Rev Bras Pesqui Med Biol. 2017;51(2):e6709–e6709.
  • Weglage J, Pietsch M, Funders B, et al. Neurological findings in early treated phenylketonuria. Acta Paediatr. 1995 Apr;84(4):411–415.
  • Cazzorla C, Bensi G, Biasucci G, et al. Living with phenylketonuria in adulthood: the PKU ATTITUDE study. Mol Genet Metab Rep. 2018;16:39–45.
  • Sirtori LR, Dutra-Filho CS, Fitarelli D, et al. Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta. 2005 Apr 15;1740(1):68–73.
  • Sitta A, Barschak AG, Deon M, et al. Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis. 2006 Dec;21(4):287–296.
  • Ercal N, Aykin-Burns N, Gurer-Orhan H, et al. Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med. 2002 May 1;32(9):906–911.
  • Schulpis KH, Tsakiris S, Traeger-Synodinos J, et al. Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin Biochem. 2005 Mar;38(3):239–242.
  • Ide T, Tsutsui H, Kinugawa S, et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999;85(4):357–363.
  • Matsuzaki S, Szweda PA, Szweda LI, et al. Regulated production of free radicals by the mitochondrial electron transport chain: cardiac ischemic preconditioning. Adv Drug Deliv Rev. 2009;61(14):1324–1331.
  • Rech VC, Feksa LR, Dutra-Filho CS, et al. Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res. 2002 May;27(5):353–357.
  • Kyprianou N, Murphy E, Lee P, et al. Assessment of mitochondrial respiratory chain function in hyperphenylalaninaemia. J Inherit Metab Dis. 2009;32(2):289–296.
  • Hargreaves IP, Heales SJ, Briddon A, et al. Blood mononuclear cell coenzyme Q10 concentration and mitochondrial respiratory chain succinate cytochrome-c reductase activity in phenylketonuric patients. J Inherit Metab Dis. 2002 Dec;25(8):673–679.
  • Halestrap AP, Brand MD, Denton RM. Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochim Biophys Acta - Biomembr. 1974;367(1):102–108.
  • Preissler T, Bristot IJ, Costa BM, et al. Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis. 2016 Jun;31(3):529–537.
  • de Groot MJ, Sijens PE, Reijngoud D-J, et al. Phenylketonuria: brain phenylalanine concentrations relate inversely to cerebral protein synthesis. J Cereb Blood Flow and Metab. 2015;35(2):200–205.
  • Hatanaka N, Nakaden H, Yamamoto Y, et al. Selenium kinetics and changes in glutathione peroxidase activities in patients receiving long-term parenteral nutrition and effects of supplementation with selenite. Nutrition. 2000 Jan;16(1):22–26.
  • Sanayama Y, Nagasaka H, Takayanagi M, et al. Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab. 2011 Jul;103(3):220–225.
  • Kienzle Hagen ME, Pederzolli CD, Sgaravatti AM, et al. Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta. 2002 Apr 24;1586(3):344–352.
  • Castillo M, Zafra MF, Garcia-Peregrin E. Inhibition of brain and liver 3-hydroxy-3-methylglutaryl-CoA reductase and mevalonate-5-pyrophosphate decarboxylase in experimental hyperphenylalaninemia. Neurochem Res. 1988;13(6):551–555.
  • Shefer S, Tint GS, Jean-Guillaume D, et al. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res. 2000 Sep 1;61(5):549–563.
  • Montero R, Yubero D, Salgado MC, et al. Plasma coenzyme Q(10) status is impaired in selected genetic conditions. Sci Rep. 2019;9(1):793.
  • Artuch R, Colomé C, Vilaseca MA, et al. Plasma phenylalanine is asociated with decreased serum ubiquine-10 concentrations in phenylketonuria. J Inherit Metab Dis. 2001;24(3):359–366.
  • Zhong X, Yi X, da Silveira ESR, et al. CoQ10 deficiency may indicate mitochondrial dysfunction in Cr(VI) toxicity. Int J Mol Sci. 2017;18(4):816.
  • Miyamae T, Seki M, Naga T, et al. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep. 2013;18(1):12–19.
  • Platt FM, d’Azzo A, Davidson BL, et al. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4(1):27.
  • Sun A. Lysosomal storage disease overview. Ann Transl Med. 2018;6(24):476.
  • Ferreira CR, Gahl WA. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2(1–2):1–71.
  • Folts CJ, Scott-Hewitt N, Pröschel C, et al. Lysosomal Re-acidification prevents lysosphingolipid-induced lysosomal impairment and cellular toxicity. PLoS Biol. 2016;14(12):e1002583.
  • Wraith JE. The clinical presentation of lysosomal storage disorders. Acta Neurol Taiwan. 2004 Sep;13(3):101–106.
  • Donida B, Jacques CED, Mescka CP, et al. Oxidative damage and redox in Lysosomal storage disorders: biochemical markers. Clin Chim Acta. 2017;466:46–53.
  • Demine S, Michel S, Vannuvel K, et al. Macroautophagy and cell responses related to mitochondrial dysfunction, lipid metabolism and unconventional secretion of proteins. Cells. 2012 Jun 20;1(2):168–203.
  • Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 2012 Nov 26;199(5):723–734.
  • Mello AS, da Silva Garcia C, de Souza Machado F, et al. Oxidative stress parameters of Gaucher disease type I patients. Mol Genet Metab Rep. 2015;4:1–5.
  • Beutler E, Demina A, Gelbart T. Glucocerebrosidase mutations in Gaucher disease. Mol Med (Cambridge, MA). 1994;1(1):82–92.
  • Stirnemann J, Belmatoug N, Camou F, et al. A review of gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18(2):441.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009 Feb-Apr;30(1–2):1–12.
  • Donida B, Marchetti DP, Jacques CED, et al. Oxidative profile exhibited by Mucopolysaccharidosis type IVA patients at diagnosis: increased keratan urinary levels. Mol Genet Metab Rep. 2017;11:46–53.
  • Filippon L, Vanzin CS, Biancini GB, et al. Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme replacement therapy. Mol Genet Metab. 2011;103(2):121–127.
  • Kwan WP, Voelker BM. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed fenton-like systems. Environ Sci Technol. 2003;37(6):1150–1158.
  • Osellame LD, Rahim AA, Hargreaves IP, et al. Mitochondria and quality control defects in a mouse model of Gaucher disease–links to Parkinson’s disease. Cell Metab. 2013;17(6):941–953.
  • Selak MA, de Chadarevian JP, Melvin JJ, et al. Mitochondrial activity in Pompe’s disease. Pediatr Neurol. 2000 Jul;23(1):54–57.
  • Martins C, Hůlková H, Dridi L, et al. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain. 2015;138(Pt 2):336–355.
  • Yubero D, Montero R, O’Callaghan M, et al. Coenzyme Q(10) and pyridoxal phosphate deficiency is a common feature in mucopolysaccharidosis type III. JIMD Rep. 2016;25:1–7.
  • Delille HK, Bonekamp NA, Schrader M. Peroxisomes and disease - an overview. Int J Biomed Sci: IJBS. 2006;2(4):308–314.
  • Wierzbicki AS, Lloyd MD, Schofield CJ, et al. Refsum’s disease: a peroxisomal disorder affecting phytanic acid alpha-oxidation. J Neurochem. 2002 Mar;80(5):727–735.
  • Leipnitz G, Amaral AU, Fernandes CG, et al. Pristanic acid promotes oxidative stress in brain cortex of young rats: a possible pathophysiological mechanism for brain damage in peroxisomal disorders. Brain Res. 2011 Mar;25(1382):259–265.
  • Argyriou C, D’Agostino MD, Braverman N. Peroxisome biogenesis disorders. Transl Sci Rare Dis. 2016;1(2):111–144.
  • Suzuki Y, Shimozawa N, Orii T, et al. Genetic and molecular bases of peroxisome biogenesis disorders. Genet Med. 2001;3(5):372–376.
  • Baumgartner MR, Poll-The BT, Verhoeven NM, et al. Clinical approach to inherited peroxisomal disorders: a series of 27 patients. Ann Neurol. 1998 Nov;44(5):720–730.
  • Bams-Mengerink AM, Koelman JHTM, Waterham H, et al. The neurology of rhizomelic chondrodysplasia punctata. Orphanet J Rare Dis. 2013;8(1):174.
  • Farrell DF. Neonatal adrenoleukodystrophy: a clinical, pathologic, and biochemical study. Pediatr Neurol. 2012 Nov;47(5):330–336.
  • Krysko O, Bottelbergs A, Van Veldhoven P, et al. Combined deficiency of peroxisomal beta-oxidation and ether lipid synthesis in mice causes only minor cortical neuronal migration defects but severe hypotonia. Mol Genet Metab. 2010 May;100(1):71–76.
  • Fransen M, Nordgren M, Wang B, et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta. 2012 Sep;1822(9):1363–1373.
  • Gabison L, Prangé T, Colloc’h N, et al. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: mechanistic implications. BMC Struct Biol. 2008;8:32.
  • Pascual-Ahuir A, Manzanares-Estreder S, Pro- and antioxidant functions of the peroxisome-mitochondria connection and its impact on aging and disease. Oxid Med Cell Longev. 2017;2017:9860841.
  • Heck DE, Shakarjian M, Kim HD, et al. Mechanisms of oxidant generation by catalase. Ann N Y Acad Sci. 2010;1203:120–125.
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.
  • El-Bassyouni HT, Abdel Maksoud SA, Salem FA, et al. Evidence of oxidative stress in peroxisomal disorders. Singapore Med J. 2012 Sep;53(9):608–614.
  • Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837d.
  • Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem: IJCB. 2015;30(1):11–26.
  • Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2012;1822(9):1430–1441.
  • Ferdinandusse S, Finckh B, de Hingh YC, et al. Evidence for increased oxidative stress in peroxisomal D-bifunctional protein deficiency. Mol Genet Metab. 2003 Aug;79(4):281–287.
  • Baarine M, Beeson C, Singh A, et al. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem. 2015 May;133(3):380–396.
  • Kemp S, Theodoulou FL, Wanders RJA. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol. 2011;164(7):1753–1766.
  • Lopez-Erauskin J, Galino J, Ruiz M, et al. Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet. 2013 Aug 15;22(16):3296–3305.
  • Schönfeld P, Reiser G. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem. 2006 March 17;281(11):7136–7142.
  • Neergheen V, Chalasani A, Wainwright L. et al. Coenzyme Q10 in the treatment of mitochondrial disease. J Inborn Errors Metab Screening. 2017; 5.
  • Hargreaves IP. Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol. 2014 Apr;49:105–111.
  • Huang Y, Liu X, Cui Z, et al. Pyridoxal-5′-phosphate as an oxygenase cofactor: discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase. Proc Nat Acad Sci. 2018;115(5):974–979.
  • Turton N, Heaton RA, Ismail F, et al. The effect of organophosphate exposure on neuronal cell coenzyme Q10 status. Neurochem Res. 2020 Apr 18.
  • Duberley KE, Heales SJR, Abramov AY, et al. Effect of Coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in Coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol. 2014;50:60–63.
  • Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007 Jun;7(Suppl):S41–50.
  • Udhayabanu T, Manole A, Rajeshwari M, et al. Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J Clin Med. 2017 May 5;6(5):52.
  • Sauve AA. NAD+ and Vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther. 2008;324(3):883–893.
  • Manole A, Jaunmuktane Z, Hargreaves I, et al. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain. 2017;140(11):2820–2837.
  • Gerards M, van den Bosch BJC, Danhauser K, et al. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain. 2010;134(1):210–219.
  • Olsen RK, Olpin SE, Andresen BS, et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain. 2007 Aug;130(Pt 8):2045–2054.
  • Grad LI, Lemire BD. Riboflavin enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH-ubiquinone oxidoreductase mutants. Biochim Biophys Acta. 2006 Feb;1757(2):115–122.
  • Cantó C, Houtkooper Riekelt H, Pirinen E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–847.
  • Jia H, Li X, Gao H, et al. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease. J Neurosci Res. 2008;86(9):2083–2090.
  • Kirsch M, Groot HD. NAD(P)H, a directly operating antioxidant? Faseb J. 2001;15(9):1569–1574.
  • Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53.
  • Rodgers JT, Lerin C, Gerhart-Hines Z, et al. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2008;582(1):46–53.
  • Khan NA, Auranen M, Paetau I, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721–731.
  • Heaton R, Millichap L, Saleem F, et al. Current biochemical treatments of mitochondrial respiratory chain disorders. Expert Opin Orphan Drugs. 2019;7(6):277–285.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–344.
  • Sanoobar M, Eghtesadi S, Azimi A, et al. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis. Int J Neurosci. 2013 Nov;123(11):776–782.
  • Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.
  • de la Mata M, Cotán D, Oropesa-Ávila M, et al. Coenzyme Q(10) partially restores pathological alterations in a macrophage model of Gaucher disease. Orphanet J Rare Dis. 2017;12(1):23.
  • Wainwright L Mechanisms of coenzyme Q10 blood-brain barrier transport 2018.
  • Baumgartner S, Mensink RP, Haenen GR, et al. The effects of vitamin E or lipoic acid supplementation on oxyphytosterols in subjects with elevated oxidative stress: a randomized trial. Sci Rep. 2017;7(1):15288.
  • Maharjan S, Sakai Y, Hoseki J. Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state. Biosci Biotechnol Biochem. 2016;80(4):726–734.
  • Harris CB, Chowanadisai W, Mishchuk DO, et al. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem. 2013 Dec;24(12):2076–2084 (refer previous published articles for examples).
  • Derosa G, D’Angelo A, Romano D, et al. A clinical trial about a food supplement containing α-lipoic acid on oxidative stress markers in type 2 diabetic patients. Int J Mol Sci. 2016;17(11):1802 (refer previous published articles for examples).
  • Khalili M, Eghtesadi S, Mirshafiey A, et al. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci. 2014 Jan;17(1):16–20 (refer previous published articles for examples).
  • McMackin CJ, Widlansky ME, Hamburg NM, et al. Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich). 2007 Apr;9(4):249–255 (refer previous published articles for examples).
  • Zhang L, Zhang Z, Khan A, et al. Advances in drug therapy for mitochondrial diseases. Ann Transl Med. 2020;8(1):17 (refer previous published articles for examples).
  • Polyak E, Ostrovsky J, Peng M, et al. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab. 2018;123(4):449–462 (refer previous published articles for examples).
  • Fernandes CG, Leipnitz G, Seminotti B, et al. Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol. 2010 Mar;30(2):317–326.
  • Martinelli D, Catteruccia M, Piemonte F, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease–genetically defined Leigh Syndrome. Mol Genet Metab. 2012 Nov;107(3):383–388.
  • Enns GM, Cowan TM. Glutathione as a redox biomarker in mitochondrial disease-implications for therapy. J Clin Med. 2017. DOI:10.3390/jcm6050050
  • Tardiolo G, Bramanti P, Mazzon E. Overview on the effects of N-acetylcysteine in neurodegenerative diseases. Molecules. 2018;23(12):3305.
  • Reyes RC, Cittolin-Santos GF, Kim J-E, et al. Neuronal glutathione content and antioxidant capacity can be normalized in situ by N-acetyl cysteine concentrations attained in human cerebrospinal fluid. Neurotherapeutics. 2016;13(1):217–225.
  • Kerksick C, Willoughby D. The antioxidant role of glutathione and N-Acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38.
  • Ikejiri Y, Mori E, Ishii K, et al. Idebenone improves cerebral mitochondrial oxidative metabolism in a patient with MELAS. Neurology. 1996 Aug;47(2):583–585.
  • Klopstock T, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011 Sep;134(Pt 9):2677–2686.
  • Rudolph G, Dimitriadis K, Büchner B, et al. Effects of idebenone on color vision in patients with leber hereditary optic neuropathy. J Neuroophthalmol. 2013;33(1):30–36.
  • Kerr DS. Review of clinical trials for mitochondrial disorders: 1997–2012. Neurotherapeutics. 2013 Apr;10(2):307–319.
  • Chan SHH, Chan JYH. Mitochondria and reactive oxygen species contribute to neurogenic hypertension. Physiology. 2017;32(4):308–321.
  • Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84.
  • Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884S–90.
  • Kuo YT, Shih PH, Kao SH, et al. Pyrroloquinoline quinone resists denervation-induced skeletal muscle atrophy by activating PGC-1α and integrating mitochondrial electron transport chain complexes. PLoS One. 2015;10(12):e0143600.
  • He K, Nukada H, Urakami T, et al. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochem Pharmacol. 2003 Jan 1;65(1):67–74.
  • Lu J, Chen S, Shen M, et al. Mitochondrial regulation by pyrroloquinoline quinone prevents rotenone-induced neurotoxicity in Parkinson’s disease models. Neurosci Lett. 2018 Nov;20(687):104–110.
  • Chowanadisai W, Bauerly KA, Tchaparian E, et al. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem. 2010;285(1):142–152.
  • Saihara K, Kamikubo R, Ikemoto K, et al. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway. Biochemistry. 2017 Dec 19;56(50):6615–6625.
  • Tinggi U. Selenium: its role as antioxidant in human health. Environ Health Prev Med. 2008;13(2):102–108.
  • Mendelev N, Mehta SL, Idris H, et al. Selenite stimulates mitochondrial biogenesis signaling and enhances mitochondrial functional performance in murine hippocampal neuronal cells. Plos One. 2012;7(10):e47910.
  • Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998 Dec 4;273(49):32377–32379.
  • Mehta SL, Kumari S, Mendelev N, et al. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 2012;13:79.
  • Mangiapane E, Pessione A, Pessione E. Selenium and selenoproteins: an overview on different biological systems. Curr Protein Pept Sci. 2014;15(6):598–607.
  • Oliveira-Silva JA, Yamamoto JUP, Oliveira RB, et al. Oxidative stress assessment by glutathione peroxidase activity and glutathione levels in response to selenium supplementation in patients with Mucopolysaccharidosis I, II and VI. Genet Mol Biol. 2019 Jan-Mar;42(1):1–8.
  • Hargreaves IP, Mantle D. Supplementation with selenium and coenzyme Q10 in critically ill patients. Br J Hosp Med (Lond). 2019 Oct 2;80(10):589–593.
  • Xia L, Nordman T, Olsson JM, et al. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem. 2003 Jan 24;278(4):2141–2146.
  • Moosmann B, Behl C. Selenoproteins, cholesterol-lowering drugs, and the consequences: revisiting of the mevalonate pathway. Trends Cardiovasc Med. 2004 Oct;14(7):273–281.
  • Malapaka RRV, Khoo S, Zhang J, et al. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem. 2012;287(1):183–195.
  • Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–151.
  • Kanabus M, Fassone E, Hughes SD, et al. The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome. J Inherit Metab Dis. 2016;39(3):415–426.
  • Hughes SD, Kanabus M, Anderson G, et al. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem. 2014 May;129(3):426–433.
  • Greco T, Glenn TC, Hovda DA, et al. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow and Metab. 2016;36(9):1603–1613.
  • Hasan-Olive MM, Lauritzen KH, Ali M, et al. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis. Neurochem Res. 2019 Jan;44(1):22–37.
  • Ford S, O’Driscoll M, MacDonald A. Living with Phenylketonuria: lessons from the PKU community. Mol Genet Metab Rep. 2018;17:57–63.
  • Robert M, Rocha JC, van Rijn M, et al. Micronutrient status in phenylketonuria. Mol Genet Metab. 2013;110:S6–S17.
  • Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–772.
  • Plotegher N, Duchen MR. Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders. Trends Mol Med. 2017;23(2):116–134.
  • Yambire KF, Fernandez-Mosquera L, Steinfeld R, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. eLife. 2019;8:e39598.
  • Ivankovic D, Chau KY, Schapira AH, et al. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016 Jan;136(2):388–402.
  • Zhou X, Yang J, Zhou M, et al. Resveratrol attenuates endothelial oxidative injury by inducing autophagy via the activation of transcription factor EB. Nutr Metab (Lond). 2019;16(1):42.
  • Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009;297(1):H13–H20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.