10,061
Views
20
CrossRef citations to date
0
Altmetric
Review

Advances in understanding of Netherton syndrome and therapeutic implications

&
Pages 455-487 | Received 28 Aug 2020, Accepted 26 Nov 2020, Published online: 29 Dec 2020

References

  • Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in sorèze 2009. J Am Acad Dermatol. 2010;63:607–641.
  • Comel M. Ichthyosis linearis circumflexa. Dermatologica. 1949;98:133–136.
  • Netherton EW. A unique case of trichorrhexis nodosa; bamboo hairs. AMA Arch Derm. 1958;78: 483–487. DOI:10.1001/archderm.1958.01560100059009
  • Wilkinson RD, Curtis GH, Hawk WA. Netherton´s disease; Trichorrhexis invaginata (bamboo hair), congenital ichthyosiform erythroderma and the atopic diathesis. A histopathologic study. Arch Dermatol. 1964;89:46–54. DOI:10.1001/archderm.1964.01590250052010.
  • Ong C, Harper J. Netherton’s syndrome. In: Harper J, Orange A, Prose N, editors. Textbook of pediatric dermatology. Turin: Blackwell; 2006. p.1359-1366.
  • Traupe H. The Comel-Netherton syndrome. In: Traupe H, editor. The Ichthyoses. a guide to clinical diagnosis, genetic counseling and therapy. Berlin: Springer-Verlag; 1989. p. 168-178.
  • Hausser I, Anton-Lamprecht I. Severe congenital generalized exfoliative erythroderma in newborns and infants: a possible sign of Netherton syndrome. Pediatr Dermatol. 1996;13:183–199.
  • Hannula-Jouppi K, Laasanen SL, Heikkilä H, et al. IgE allergen component-based profiling and atopic manifestations in patients with Netherton syndrome. J Allergy Clin Immunol. 2014;134:985–988.
  • Williams MR, Cau L, Wang Y, et al. Interplay of staphylococcal and host proteases promotes skin barrier disruption in netherton syndrome. Cell Rep. 2020;30:2923–2933.e7. DOI:10.1016/j.celrep.2020.02.021
  • Fölster-Holst R, Swensson O, Stockfleth E, et al. Comèl-Netherton syndrome complicated by papillomatous skin lesions containing human papillomaviruses 51 and 52 and plane warts containing human papillomavirus 16. Br J Dermatol. 1999;140:1139–1143.
  • Guerra L, Fortugno P, Sinistro A, et al. Betapapillomavirus in multiple non-melanoma skin cancers of Netherton syndrome: case report and published work review. J Dermatol. 2015;42:786–794.
  • Ashton R, Moledina J, Sivakumar B, et al. Considerations in surgical management of a Buschke-Lowenstein tumor in Netherton syndrome: a case report. Pediatr Dermatol. 2017;34:e328–e330.
  • van der Voort EAM, Prens EP. Netherton syndrome with multiple non-melanoma skin cancers. Acta Derm Venereol. 2013;93:727–728.
  • Moskowitz DG, Fowler AJ, Heyman MB, et al. Pathophysiologic basis for growth failure in children with ichthyosis: an evaluation of cutaneous ultrastructure, epidermal permeability barrier function, and energy expenditure. J Pediatr. 2004;145:82–92.
  • Komatsu N, Saijoh K, Otsuki N, et al. Proteolytic processing of human growth hormone by multiple tissue kallikreins and regulation by the serine protease inhibitor Kazal-Type5 (SPINK5) protein. Clin Chim Acta. 2007;377:228–236.
  • Eränkö E, Ilander M, Tuomiranta M, et al. Immune cell phenotype and functional defects in Netherton syndrome. Orphanet J Rare Dis. 2018;13:1–10. DOI:10.1186/s13023-018-0956-6
  • Hannula-Jouppi K, Laasanen SL, Ilander M, et al. Intrafamily and interfamilial phenotype variation and immature immunity in patients with netherton syndrome and finnish SPINK5 founder mutation. JAMA Dermatol. 2016;152:435–442.
  • Paller AS, Renert-Yuval Y, Suprun M, et al. An IL-17–dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol. 2017;139:152–165. DOI:10.1016/j.jaci.2016.07.019
  • Renner ED, Hartl D, Rylaarsdam S, et al. Comèl-Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol. 2009;124:536–543. DOI:10.1016/j.jaci.2009.06.009
  • Bitoun E, Micheloni A, Lamant L, et al. LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet. 2003;12:2417–2430. DOI:10.1093/hmg/ddg247
  • Lacroix M, Lacaze-Buzy L, Furio L, et al. Clinical expression and new SPINK5 splicing defects in Netherton syndrome: unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol. 2012;132:575–582.
  • Stenson PD, Ball EV, Mort M, et al. The Human Gene Mutation Database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Curr Protoc Bioinforma. 2012;Chapter 1(Unit1):13.
  • Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25:141–142. DOI:10.1038/75977
  • Ishida-Yamamoto A, Deraison C, Bonnart C, et al. LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol. 2005;124:360–366. DOI:10.1111/j.0022-202X.2004.23583.x
  • Raghunath M, Tontsidou L, Oji V, et al. SPINK5 and Netherton syndrome: novel mutations, demonstration of missing LEKTI, and differential expression of transglutaminases. J Invest Dermatol. 2004;123:474–483.
  • Galliano MF, Roccasecca RM, Descargues P, et al. Characterization and expression analysis of the Spink5 gene, the mouse ortholog of the defective gene in Netherton syndrome. Genomics. 2005;85:483–492.
  • Descargues P, Draison C, Bonnart C, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37:56–65. DOI:10.1038/ng1493
  • Hewett DR, Simons AL, Mangan NE, et al. Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet. 2005;14:335–346. DOI:10.1093/hmg/ddi030
  • Keuylian Z, Hovnanian A. Mechanistic insight from murine models of Netherton syndrome. Biol Chem. 2016;397:1223–1228.
  • Yang T, Liang D, Koch PJ, et al. Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice. Genes Dev. 2004;18:2354–2358. DOI:10.1101/gad.1232104
  • Briot A, Deraison C, Lacroix M, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206:1135–1147. DOI:10.1084/jem.20082242
  • Briot A, Lacroix M, Robin A, et al. Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in netherton syndrome adult mouse model. J Invest Dermatol. 2010;130:2736–2742.
  • Kasparek P, Ileninova Z, Haneckova R, et al. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene. Biol Chem. 2016;397:1287–1292.
  • Mägert HJ, Ständker L, Kreutzmann P, et al. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem. 1999;274:21499–21502. DOI:10.1074/jbc.274.31.21499
  • Tartaglia-Polcini A, Bonnart C, Micheloni A, et al. SPINK5, the defective gene in netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing. J Invest Dermatol. 2006;126:315–324.
  • Fortugno P, Bresciani A, Paolini C, et al. Proteolytic activation cascade of the netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J Invest Dermatol. 2011;131:2223–2232. DOI:10.1038/jid.2011.174
  • Borgoño CA, Michael IP, Komatsu N, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282:3640–3652.
  • Deraison C, Bonnart C, Lopez F, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18:3607–3619. DOI:10.1091/mbc.e07-02-0124
  • Bennett K, Heywood W, Di WL, et al. The identification of a new role for LEKTI in the skin: the use of protein “bait” arrays to detect defective trafficking of dermcidin in the skin of patients with Netherton syndrome. J Proteomics. 2012;75:3925–3937.
  • Egelrud T, Brattsand M, Kreutzmann P, et al. hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol. 2005;153:1200–1203.
  • Mitsudo K, Jayakumar A, Henderson Y, et al. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: A kinetic analysis. Biochemistry. 2003;42:3874–3881.
  • Schechter NM, Choi EJ, Wang ZM, et al. Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem. 2005;386:1173–1184.
  • Bonnart C, Deraison C, Lacroix M, et al. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest. 2010;120:871–882. DOI:10.1172/JCI41440
  • Bennett K, Callard R, Heywood W, et al. New role for LEKTI in skin barrier formation: label-free quantitative proteomic identification of caspase 14 as a novel target for the protease inhibitor LEKTI. J Proteome Res. 2010;9:4289–4294.
  • Komatsu N, Takata M, Otsuki N, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol. 2002;118:436–443.
  • Eissa A, Diamandis EP. Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem. 2008;389:669–680.
  • Billi AC, Ludwig JE, Fritz Y, et al. KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. J Clin Invest. 2020;130:3151–3157.
  • Gouin O, Barbieux C, Leturcq F, et al. Transgenic kallikrein 14 mice display major hair shaft defects associated with desmoglein 3 and 4 degradation, abnormal epidermal differentiation, and IL-36 signature. J Invest Dermatol. 2020;140:1184–1194. DOI:10.1016/j.jid.2019.10.026
  • Bäckman A, Ny A, Edlund M, et al. Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: A model for chronic itchy dermatitis. J Invest Dermatol. 2002;118(3):444–449. DOI:10.1046/j.0022-202x.2001.01684.x
  • Ny A, Egelrud T. Transgenic Mice over-expressing a serine protease in the skin: evidence of interferon γ-independent MHC II expression by epidermal keratinocytes. Acta Derm Venereol. 2003;83:322–327.
  • Ny A, Egelrud T. Epidermal hyperproliferation and decreased skin barrier function in mice overexpressing stratum corneum chymotryptic enzyme. Acta Derm Venereol. 2004;84:18–22.
  • Furio L, De Veer S, Jaillet M, et al. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. J Exp Med. 2014;211:499–513. DOI:10.1084/jem.20131797
  • Caubet C, Jonca N, Brattsand M, et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol. 2004;122:1235–1244.
  • Descargues P, Deraison C, Prost C, et al. Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol. 2006;126:1622–1632. DOI:10.1038/sj.jid.5700284
  • Simon M, Jonca N, Guerrin M, et al. Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem. 2001;276:20292–20299.
  • Sakabe JI, Yamamoto M, Hirakawa S, et al. Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J Biol Chem. 2013;288:17179–17189.
  • Hachem JP, Wagberg F, Schmuth M, et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol. 2006;126:1609–1621.
  • Hachem JP, Man MQ, Crumrine D, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–520.
  • Elias PM, Wakefield JS. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134(781–91):e1.
  • Van Smeden J, Janssens M, Boiten WA, et al. Intercellular skin barrier lipid composition and organization in netherton syndrome patients. J Invest Dermatol. 2014;134:1238–1245.
  • van Smeden J, Al-Khakany H, Wang Y, et al. Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities. J Lipid Res. 2020;61:859–869. DOI:10.1194/jlr.RA120000639
  • Fartasch M, Williams ML, Elias PM. Altered lamellar body secretion and stratum corneum membrane structure in Netherton syndrome: differentiation from other infantile erythrodermas and pathogenic implications. Arch Dermatol. 1999;135:823–832.
  • Oikonomopoulou K, Hansen KK, Saifeddine M, et al. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem. 2006;387:817–824.
  • Stefansson K, Brattsand M, Roosterman D, et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol. 2008;128:18–25.
  • Nylander-Lundqvist E, Egelrud T. Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm Venereol. 1997;77:203–209.
  • Yamasaki K, Schauber J, Coda A, et al. Kallikrein‐mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. Faseb J. 2006;20:2068–2080.
  • Malik K, He H, Huynh TN, et al. Ichthyosis molecular fingerprinting shows profound T H 17 skewing and a unique barrier genomic signature. J Allergy Clin Immunol. 2019;143:604–618. DOI:10.1016/j.jaci.2018.03.021
  • Kobayashi T, Nagao K. Host-microbial dialogues in atopic dermatitis. Int Immunol. 2019;31:449–456.
  • Kim BE, Leung DYM, Boguniewicz M, et al. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126:332–337.
  • Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2009;124:R7–R12.
  • Hatano Y, Terashi H, Arakawa S, et al. Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol. 2005;124:786–792.
  • Steinhoff M, Bienenstock J, Schmelz M, et al. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol. 2006;126:1705–1718.
  • Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396:345–360.
  • Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Prim. 2016;2:16082.
  • Lodén M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermatol. 2003;4:771–788.
  • Wehr RF, Hickman J, Krochmal L. Effective treatment of Netherton’s syndrome with 12% lactate lotion. J Am Acad Dermatol. 1988;19:140–142.
  • Cockayne SE, Lee JA, Harrington CI. Oleogranulomatous response in lymph nodes associated with emollient use in Netherton’s syndrome. Br J Dermatol. 1999;141:562–564.
  • Elias PM, Wakefield JS, Man M-Q. Moisturizers versus current and next-generation barrier repair therapy for the management of atopic dermatitis. Skin Pharmacol Physiol. 2019;32:1–7.
  • Lin T-K, Man M-Q, Santiago J-L, et al. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol. 2013;133:469–478.
  • Teng J, Marqueling A, Benjamin L. Therapy in pediatric dermatology: management of pediatric Skin Disease. Cham: Springer; 2017.
  • Bandyopadhyay D. A treatise on topical corticosteroids in dermatology. Use, misuse and abuse. Indian J Dermatol Venereol Leprol. 2018. DOI:10.4103/ijdvl.IJDVL_755_18
  • Ference JD, Last AR. Choosing topical corticosteroids. Am Fam Physician. 2009;79:135–140.
  • Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and Disease. Rheum Dis Clin North Am. 2016;42:15–31.
  • Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005;353:1711–1723.
  • Uva L, Miguel D, Pinheiro C, et al. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol. 2012;2012:561018.
  • Greene SL, Muller SA. Netherton’s syndrome: report of a case and review of the literature. J Am Acad Dermatol. 1985;13:329–337.
  • Halverstam CP, Vachharajani A, Mallory SB. Cushing syndrome from percutaneous absorption of 1% hydrocortisone ointment in Netherton syndrome. Pediatr Dermatol. 2007;24:42–45.
  • Valette C, Ofaiche J, Severino M. Évolution fatale du syndrome de Netherthon due à une utilisation excessive de dermocorticoïdes chez un adulte. Ann Dermatol Venereol. 2020;147:36–40.
  • Beckenbach L, Baron JM, Merk HF, et al. Retinoid treatment of skin diseases. Eur J Dermatology. 2015;25:384–391. DOI:10.1684/ejd.2015.2544
  • Digiovanna JJ, Mauro T, Milstone LM, et al. Systemic retinoids in the management of ichthyoses and related skin types. Dermatol Ther. 2013;26:26–38.
  • Lazaridou E, Apalla Z, Patsatsi A, et al. Netherton’s syndrome: successful treatment with isotretinoin. J Eur Acad Dermatol Venereol. 2009;23:210–212.
  • Leung AKC, Barankin B, Leong KF. An 8-year-old child with delayed diagnosis of netherton syndrome. Case Rep Pediatr. 2018;2018:1–4.
  • Haußer I, Anton-Lamprecht I, Hartschuh W, et al. Netherton’s syndrome: ultrastructure of the active lesion under retinoid therapy. Arch Dermatol Res. 1989;281:165–172.
  • Nevet MJ, Indelman M, Ben-Ari J, et al. A case of Netherton syndrome with intestinal atresia, a novel SPINK5 mutation, and a fatal course. Int J Dermatol. 2017;56:1055–1057.
  • Caputo R, Vanotti P, Bertani E. Netherton’s Syndrome in two adult brothers. Arch Dermatol. 1984;120:220–222.
  • Maatouk I, Moutran R, Tomb R. Narrowband ultraviolet B phototherapy associated with improvement in Netherton syndrome. Clin Exp Dermatol. 2012;37:364–366.
  • Happle R, van de Kerkhof PC, Traupe H. Retinoids in disorders of keratinization: their use in adults. Dermatologica. 1987;175(Suppl):107–124.
  • Orfanos CE, Zouboulis CC, Almond-Roesler B, et al. Current use and future potential role of retinoids in dermatology. Drugs. 1997;53:358–388.
  • Groves S, Dezfoulian B, Bonardeaux C, et al. Netherton’s syndrome in two sisters. A ten year experience of therapy with retinoids. J Eur Acad Dermatol Venereol. 1995;5:173–176.
  • Scott LJ, Dunn CJ, Goa KL. Calcipotriol ointment. A review of its use in the management of psoriasis. Am J Clin Dermatol. 2001;2:95–120.
  • Guenther LC. Calcipotriol/betamethasone dipropionate :daivobet/dovobet. Therapy. 2005;2:343–348.
  • Trémezaygues L, Reichrath J. Vitamin D analogs in the treatment of psoriasis: where are we standing and where will we be going? Dermatoendocrinol. 2011;3:180–186.
  • Peric M, Koglin S, Dombrowski Y, et al. Vitamin D analogs differentially control antimicrobial peptide/‘“ alarmin ”’ expression in psoriasis. PLoS One. 2009; 4(7):e6340.
  • Germán B, Wei R, Hener P, et al. Disrupting the IL-36 and IL-23/IL-17 loop underlies the efficacy of calcipotriol and corticosteroid therapy for psoriasis. JCI Insight. 2019;4(2):e123390.
  • Lucker GP, van de Kerkhof PC, van Dïjk MR, et al. Effect of topical calcipotriol on congenital ichthyoses. Br J Dermatol. 1994;131:546–550.
  • Godic A, Dragos V. Successful treatment of Netherton’s syndrome with topical calcipotriol. Eur J Dermatol. 2004;14:115–117.
  • Grassberger M, Steinhoff M, Schneider D, et al. Pimecrolimus - An anti-inflammatory drug targeting the skin. Exp Dermatol. 2004;13:721–730.
  • Nakahara T, Morimoto H, Murakami N, et al. Mechanistic insights into topical tacrolimus for the treatment of atopic dermatitis. Pediatr Allergy Immunol off Publ Eur Soc Pediatr Allergy Immunol. 2018;29:233–238.
  • Ma Z, Jiao Z. Mast cells as targets of pimecrolimus. Curr Pharm Des. 2011;17:3823–3829.
  • Billich A, Aschauer H, Aszódi A, et al. Percutaneous absorption of drugs used in atopic eczema: pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm. 2004;269:29–35.
  • Meingassner JG, Aschauer H, Stuetz A, et al. Pimecrolimus permeates less than tacrolimus through normal, inflamed, or corticosteroid-pretreated skin. Exp Dermatol. 2005;14:752–757.
  • Oji V, Beljan G, Beier K, et al. Topical pimecrolimus: a novel therapeutic option for Netherton syndrome. Br J Dermatol. England. 2005;1067–1068. DOI:10.1111/j.1365-2133.2005.06884.x
  • Shah KN, Yan AC. Low but detectable serum levels of tacrolimus seen with the use of very dilute, extemporaneously compounded formulations of tacrolimus ointment in the treatment of patients with netherton syndrome. Arch Dermatol. 2006;142(10):1362-3.
  • Allen A, Siegfried E, Silverman R, et al. Significant absorption of topical tacrolimus in 3 patients with netherton syndrome. Arch Dermatol. 2001;137:747–750.
  • Bens G, Boralevi F, Buzenet C, et al. Topical treatment of Netherton’s syndrome with tacrolimus ointment without significant systemic absorption. Br J Dermatol. 2003;224–226. England. DOI:10.1046/j.1365-2133.2003.05443.x
  • Yan AC, Honig PJ, Ming ME, et al. The safety and efficacy of pimecrolimus, 1%, cream for the treatment of Netherton syndrome: results from an exploratory study. Arch Dermatol. 2010;146:57–62.
  • Saif GB, Al-Khenaizan S. Netherton syndrome: successful use of topical tacrolimus and pimecrolimus in four siblings. Int J Dermatol. 2007;46:290–294.
  • Henno A, Choffray A, De La Brassinne M. Amélioration par pimecrolimus topique de l’érythrodermie du syndrome de Netherton chez deux sœurs adultes. Ann Dermatol Venereol. 2006;133:71–72.
  • Margolis JS, Abuabara K, Bilker W, et al. Persistence of mild to moderate atopic dermatitis. JAMA Dermatol. 2014;150:593–600.
  • Kim M, Jung M, Hong S-P, et al. Topical calcineurin inhibitors compromise stratum corneum integrity, epidermal permeability and antimicrobial barrier function. Exp Dermatol. 2010;19:501–510.
  • Ibbotson SH. A perspective on the use of NB-UVB phototherapy vs. PUVA photochemotherapy. Front Med. 2018;5:1–8.
  • Wong T, Hsu L, Liao W. Phototherapy in psoriasis: a review of mechanisms of action. J Cutan Med Surg. 2013;17:6–12.
  • Kaminska ECN, Ortel B, Sharma V, et al. Narrowband UVB phototherapy as a novel treatment for Netherton syndrome. Photodermatol Photoimmunol Photomed. 2012;28:162–164.
  • Singer R, Çopur M, Yüksel EN, et al. Ichthyosis linearis circumflexa in a child. Response to narrowband UVB therapy. J Dermatol Case Rep. 2015; 9(4):110–2.
  • Nagata T. Netherton’s syndrome which responded to photochemotherapy. Dermatology. 1980;161:51–56.
  • Capezzera R, Venturini M, Bianchi D, et al. UVA1 phototherapy of netherton syndrome [1]. Acta Derm Venereol. 2004;84:69–70.
  • Permatasari F, Zhou B, Luo D. Epidermal barrier: adverse and beneficial changes induced by ultraviolet B irradiation depending on the exposure dose and time (Review). Exp Ther Med. 2013;6:287–292.
  • Hong SP, Kim MJ, Jung M-Y, et al. Biopositive effects of low-dose UVB on epidermis: coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement. J Invest Dermatol. 2008;128:2880–2887.
  • Stern RS, Lunder EJ. Risk of squamous cell carcinoma and methoxsalen (psoralen) and UV-A radiation (PUVA). A meta-analysis. Arch Dermatol. 1998;134:1582–1585.
  • Marcil I, Stern RS. Squamous-cell cancer of the skin in patients given PUVA and ciclosporin: nested cohort crossover study. Lancet. 2001;358:1042–1045.
  • Ormerod AD. Topical tacrolimus and pimecrolimus and the risk of cancer: how much cause for concern? Br J Dermatol. 2005;153:701–705.
  • Komatsu N, Tsai B, Sidiropoulos M, et al. Quantification of eight tissue kallikreins in the stratum corneum and sweat. J Invest Dermatol. 2006;126:927–931.
  • Yu Y, Prassas I, Muytjens CMJ, et al. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J Proteomics. 2017;155:40–48.
  • Shroot B. Further light is shed on topical therapy. J Invest Dermatol. 2003;121:xiii–xiv.
  • Lundwall Å, Band V, Blaber M, et al. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins. Biol Chem. 2006;387:637–641.
  • Loessner D, Goettig P, Preis S, et al. Expert Opinion on therapeutic targets kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert Opin Ther Targets. 2018;22:745–763.
  • Filippou PS, Ren AH, Soosaipillai A, et al. Kallikrein-related peptidases protein expression in lymphoid tissues suggests potential implications in immune response: KLK protein expression in lymphoid tissues. Clin Biochem. 2020;77:41–47.
  • Shaw JLV, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem. 2007;53:1423–1432.
  • Diamandis EP, Yousef GM. Human tissue kallikrein gene family: a rich source of novel disease biomarkers. Expert Rev Mol Diagn. 2001;1:182–190.
  • Prassas I, Eissa A, Poda G, et al. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov. 2015;14:183–202.
  • Avgeris M, Scorilas A. Expert opinion on therapeutic targets kallikrein-related peptidases (KLKs) as emerging therapeutic targets : focus on prostate cancer and skin pathologies. Expert Opin Ther Targets. 2016;20:801–818.
  • Sotiropoulou G, Pampalakis G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci. 2012;33:623–634.
  • Komatsu N, Takata M, Otsuki N, et al. Expression and localization of tissue kallikrein mRNAs in human epidermis and appendages. J Invest Dermatol. 2003;121:542–549.
  • Komatsu N, Saijoh K, Toyama T, et al. Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol. 2005;153:274–281.
  • Brattsand M, Egelrud T. Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J Biol Chem. 1999;274:30033–30040.
  • Hansson L. Cloning, expression, and characterization of stratum corneum chymotryptic enzyme. J Biol Chem. 1994;269:19420–19426.
  • Stefansson K, Brattsand M, Ny A, et al. Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem. 2006;387:761–768.
  • Oikonomopoulou K, DeAngelis RA, Chen H, et al. Induction of complement C3a receptor responses by kallikrein-related peptidase 14. J Immunol. 2013;191:3858–3866.
  • Michael IP, Sotiropoulou G, Pampalakis G, et al. Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J Biol Chem. 2005;280:14628–14635.
  • Brattsand M, Stefansson K, Lundh C, et al. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol. 2005;124:198–203.
  • Yoon H, Laxmikanthan G, Lee J, et al. Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem. 2007;282:31852–31864.
  • Sales KU, Masedunskas A, Bey AL, et al. Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet. 2010;42:676–683. DOI:10.1038/ng.629
  • Lin C-Y, Wang J-K, Johnson MD. The spatiotemporal control of human matriptase action on its physiological substrates: a case against a direct role for matriptase proteolytic activity in profilaggrin processing and desquamation. Hum Cell. 2020;33:459–469.
  • Lai C-H, Chang S-C, Chen Y-J, et al. Matriptase and prostasin are expressed in human skin in an inverse trend over the course of differentiation and are targeted to different regions of the plasma membrane. Biol Open. 2016;5:1380–1387.
  • Miyai M, Matsumoto Y, Yamanishi H, et al. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J Invest Dermatol. 2014;134:1665–1674.
  • Borgoño CA, Michael IP, Shaw JLV, et al. Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. J Biol Chem. 2007;282:2405–2422.
  • Debela M, Goettig P, Magdolen V, et al. Structural basis of the zinc inhibition of human tissue kallikrein 5. J Mol Biol. 2007;373:1017–1031.
  • Debela M, Hess P, Magdolen V, et al. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci U S A. 2007;104:16086–16091.
  • Kishi T, Cloutier SM, Kündig C, et al. Activation and enzymatic characterization of recombinant human kallikrein 8. Biol Chem. 2006;387:723–731.
  • Ogawa Y, Kinoshita M, Shimada S, et al. Zinc and skin disorders. Nutrients. 2018;10:199. [Internet]. https://pubmed.ncbi.nlm.nih.gov/29439479
  • Ohman H, Vahlquist A. In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol. 1994;74:375–379.
  • Fluhr JW, Elias PM. Stratum corneum pH: formation and function of the “acid mantle”. Exog Dermatol. 2002;1: 163–175. DOI:10.1159/000066140
  • Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human Kallikrein-related peptidases. J Biol Chem. 2009;284:32989–32994.
  • Eissa A, Amodeo V, Smith CR, et al. Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J Biol Chem. 2011;286:687–706.
  • Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie. 2010;92:1546–1567.
  • Komatsu N, Saijoh K, Jayakumar A, et al. Correlation between SPINK5 gene mutations and clinical manifestations in netherton syndrome patients. J Invest Dermatol. 2008;128:1148–1159.
  • Meyer-Hoffert U, Wu Z, Kantyka T, et al. Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem. 2010;285:32174–32181.
  • Brännström K, Ohman A, von Pawel Rammingen U, et al. Characterization of SPINK9, a KLK5-specific inhibitor expressed in palmo-plantar epidermis. Biol Chem. 2012;393:369–377.
  • Brattsand M, Stefansson K, Hubiche T, et al. SPINK9: A selective, skin-specific kazal-type serine protease inhibitor. J Invest Dermatol. 2009;129:1656–1665.
  • Heit C, Jackson BC, McAndrews M, et al. Update of the human and mouse SERPIN gene superfamily. Hum Genomics. 2013;7:1–14.
  • Luo LY, Jiang W. Inhibition profiles of human tissue kallikreins by serine protease inhibitors. Biol Chem. 2006;387:813–816.
  • Zhou GX, Chao L, Chao J. Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem. 1992;267:25873–25880.
  • Scott FL, Sun J, Whisstock JC, et al. SerpinB6 is an inhibitor of kallikrein-8 in keratinocytes. J Biochem. 2007;142:435–442.
  • Ulbricht D, Tindall CA, Oertwig K, et al. Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspin. Biol Chem. 2018;399:1079–1084.
  • Heiker JT, Klöting N, Kovacs P, et al. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci. 2013;70:2569–2583.
  • Clauss A, Lilja H, Lundwall A. The evolution of a genetic locus encoding small serine proteinase inhibitors. Biochem Biophys Res Commun. 2005;333:383–389.
  • Wilkinson TS, Roghanian A, Simpson AJ, et al. WAP domain proteins as modulators of mucosal immunity. Biochem Soc Trans. 2011;39:1409–1415.
  • Franzke CW, Baici A, Bartels J, et al. Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. J Biol Chem. 1996;271:21886–21890.
  • Kalinina P, Vorstandlechner V, Buchberger M, et al. The whey acidic protein WFDC12 is specifically expressed in terminally differentiated keratinocytes and regulates epidermal serine-protease activity. J Invest Dermatol. 2020;S0022-202X(20):32252.
  • Wiedow O, Schröder JM, Gregory H, et al. Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem. 1990;265:14791–14795.
  • de Veer SJ, Furio L, Harris JM, et al. Proteases and proteomics: cutting to the core of human skin pathologies. Proteomics - Clin Appl. 2014;8:389–402.
  • de Veer SJ, Furio L, Harris JM, et al. Proteases: common culprits in human skin disorders. Trends Mol Med. 2014;20:166–178. DOI:10.1016/j.molmed.2013.11.005
  • Chittock J, Cooke A, Lavender T, et al. Development of stratum corneum chymotrypsin-like protease activity and natural moisturizing factors from birth to 4 weeks of age compared with adults. Br J Dermatol. 2016;175:713–720.
  • Diamandis EP, Yousef GM, Olsson AY. An update on human and mouse glandular kallikreins. Clin Biochem. 2004;37:258–260.
  • Yvonne Olsson A, Lundwall Å. Organization and evolution of the glandular kallikrein locus in Mus musculus. Biochem Biophys Res Commun. 2002;299:305–311.
  • Pavlopoulou A, Pampalakis G, Michalopoulos I, et al. Evolutionary history of tissue kallikreins. PLoS One. 2010;5(11):e13781.
  • Furio L, Pampalakis G, Michael IP, et al. KLK5 inactivation reverses cutaneous hallmarks of Netherton Syndrome. PLoS Genet. 2015;11:e1005389. DOI:10.1371/journal.pgen.1005389
  • Kasparek P, Ileninova Z, Zbodakova O, et al. KLK5 and KLK7 ablation fully rescues lethality of Netherton Syndrome-like phenotype. PLoS Genet. 2017;13(1):e1006566.
  • Zingkou E, Pampalakis G, Charla E, et al. A proinflammatory role of KLK6 protease in Netherton syndrome. J Dermatol Sci. 2019;95:28–35.
  • Klucky B, Mueller R, Vogt I, et al. Kallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res. 2007;67:8198–8206.
  • Chiticariu E, Hohl D. Netherton Syndrome: insights into pathogenesis and clinical implications. J Invest Dermatol. 2020;140:1129–1130.
  • Di WL, Larcher F, Semenova E, et al. Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of netherton syndrome-derived skin grafts. Mol Ther. 2011;19:408–416.
  • Gálvez V, Chacón-Solano E, Bonafont J, et al. Efficient CRISPR-Cas9-mediated gene ablation in human keratinocytes to recapitulate genodermatoses: modeling of Netherton Syndrome. Mol Ther - Methods Clin Dev. 2020;18:280–290.
  • Wang S, Olt S, Schoefmann N, et al. SPINK5 knockdown in organotypic human skin culture as a model system for Netherton syndrome: effect of genetic inhibition of serine proteases kallikrein 5 and kallikrein 7. Exp Dermatol. 2014;23:524–526.
  • Walker AL, Denis A, Bingham RP, et al. Design and development of a series of borocycles as selective, covalent kallikrein 5 inhibitors. Bioorg Med Chem Lett. 2019;29:126675. DOI:10.1016/j.bmcl.2019.126675
  • Wågberg F, Leonardsson G Sixera Pharma AB, assignee. Benzoxazinone derivatives for treatment of skin diseases. World patent WO2015/112081A1. 2015 Jul 30.
  • Sixera Pharma [Internet]. Stockholm: scientific Research ; 2018c [cited 2020 Jun 29]. https://sixerapharma.com/scientific-research/.2018
  • Vinnova [Internet]. Stockholm: new treatment for Netherton syndrome. [ updated 2019 Nov 25; cited 2020 Jun 29]. https://www.vinnova.se/en/p/new-treatment-for-netherton-syndrome/.e.2019
  • BridgeBio [Internet]. Palo Alto CA: the pipeline ; 2019c [cited 2020 Jun 29]. https://bridgebio.com/pipeline.2019
  • United States Securities and Exchange Commission [Internet]. Washington DC: form S-1 registration statement BridgeBio Pharma Inc. [ updated 2019 May 24; cited 2020 Jun 29]. https://www.sec.gov/Archives/edgar/data/1743881/00011931251915710
  • Tan X, Soualmia F, Furio L, et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem. 2015;58:598–612.
  • Di Paolo CT, Filippou PS, Yu Y, et al. Screening of chemical libraries in pursuit of kallikrein-5 specific inhibitors for the treatment of inflammatory dermatoses. Clin Chem Lab Med. 2019;57:1737–1743.
  • de Souza AS, Pacheco BDC, Pinheiro S, et al. 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorg Med Chem Lett. 2019;29:1094–1098.
  • Murafuji H, Sakai H, Goto M, et al. Discovery and structure-activity relationship study of 1,3,6-trisubstituted 1,4-diazepane-7-ones as novel human kallikrein 7 inhibitors. Bioorg Med Chem Lett. 2017;27:5272–5276.
  • Murafuji H, Sugawara H, Goto M, et al. Structure-based drug design to overcome species differences in kallikrein 7 inhibition of 1,3,6-trisubstituted 1,4-diazepan-7-ones. Bioorg Med Chem. 2018;26:3639–3653.
  • Freitas RF, Teixeira TSP, Barros TG, et al. Isomannide derivatives as new class of inhibitors for human kallikrein 7. Bioorg Med Chem Lett. 2012;22:6072–6075.
  • Tiryakioğlu NO, Önal Z, Saygili SK, et al. Treatment of ichthyosis and hypernatremia in a patient with Netherton syndrome with a SPINK5 c.153delT mutation using kallikrein inhibiting ointment. Int J Dermatol. 2017;56:106–108.
  • Elias PM. The how, why and clinical importance of stratum corneum acidification. Exp Dermatol. 2017;26:999–1003.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700–2707.
  • Lemmens-Gruber R, Kamyar MR, Dornetshuber R. Cyclodepsipeptides - potential drugs and lead compounds in the drug development process. Curr Med Chem. 2009;16:1122–1137.
  • Wang X, Gong X, Li P, et al. Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules. 2018;23(1):169.
  • Krastel P, Liechty B-M, SCHMITT E, et al. Krastel P, Liechty BM, Schmitt E, Schreiner EP, inventors; Novartis AG, assignee. Use of Cyclic Depsipeptides to Inhibit Kallikrein 7. World patent WO/2009/024528. 2009 Feb 26.
  • LifeMax [Internet]. Redwood City CA: LM-030 for treatment of Netherton syndrome ; 2020c [cited 2020 Jun 29]. https://www.lifemaxhealthcare.com/lm-030.2020
  • Luckett S, Garcia RS, Barker JJ, et al. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol. 1999;290:525–533.
  • de Veer SJ, Furio L, Swedberg JE, et al. Selective substrates and inhibitors for kallikrein-related peptidase 7 (KLK7) shed light on KLK Proteolytic activity in the stratum corneum. J Invest Dermatol. 2017;137:430–439. DOI:10.1016/j.jid.2016.09.017
  • de Veer SJ, Ukolova SS, Munro CA, et al. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers. 2013;100:510–518.
  • de Veer SJ, Swedberg JE, Brattsand M, et al. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors. Biol Chem. 2016;397:1237–1249.
  • de Veer SJ, Wang CK, Harris JM, et al. Improving the selectivity of engineered protease inhibitors: optimizing the P2 prime residue using a versatile cyclic peptide library. J Med Chem. 2015;58:8257–8268.
  • Kale SS, Bergeron-Brlek M, Wu Y, et al. Thiol-to-amine cyclization reaction enables screening of large libraries of macrocyclic compounds and the generation of sub-kilodalton ligands. Sci Adv. 2019;5:1–10.
  • Chen X, Leahy D, van Haeften J, et al. A versatile and robust serine protease inhibitor scaffold from Actinia tenebrosa. Mar Drugs. 2019;17(12):701.
  • Vasileiou Z, Barlos KK, Gatos D, et al. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. Biopolymers. 2010;94:339–349.
  • Cloutier SM, Kündig C, Felber LM, et al. Development of recombinant inhibitors specific to human kallikrein 2 using phage-display selected substrates. Eur J Biochem. 2004;271:607–613.
  • Deperthes D, Kundig C, Hovnanian A, et al. Deperthes D, Kundig C, Hovnanian A, Deraison C, inventors; Dermadis SA, INSERM, assignees. Use of serine protease inhibitors in the treatment of skin disease. World patent WO/2009/093119. 2009 Jul 30.
  • Mazereeuw-Hautier J, Cope J, Ong C, et al. Topical recombinant alpha1-antitrypsin: a potential treatment for Netherton syndrome? Arch Dermatol. 2006;142:396–398.
  • Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1–30.
  • Sexton DJ, Chen T, Martik D, et al. Specific inhibition of tissue kallikrein 1 with a human monoclonal antibody reveals a potential role in airway diseases. Biochem J. 2009;422:383–392.
  • Scarisbrick IA, Yoon H, Panos M, et al. Kallikrein 6 regulates early CNS demyelination in a viral model of multiple sclerosis. Brain Pathol. 2012;22:709–722.
  • Jones RGA, Martino A. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit Rev Biotechnol. 2016;36:506–520.
  • Tsianakas A, Brunner PM, Ghoreschi K, et al. The single-chain anti-TNF-α antibody DLX105 induces clinical and biomarker responses upon local administration in patients with chronic plaque-type psoriasis. Exp Dermatol. 2016;25:428–433.
  • Barde C, Laffitte E, Campanelli A, et al. Intralesional infliximab in noninfectious cutaneous granulomas: three cases of necrobiosis lipoidica. Dermatology. 2011;222:213–216.
  • Streit M, Beleznay Z, Braathen LR. Topical application of the tumour necrosis factor-α antibody infliximab improves healing of chronic wounds. Int Wound J. 2006;3:171–179.
  • Teich N, Klugmann T. Rapid improvement of refractory pyoderma gangrenosum with infliximab gel in a patient with ulcerative colitis. J Crohn’s Colitis. 2014;8:85–86.
  • Burek-Kozlowska A, Morell A, Hunziker T. Topical immunoglobulin G in atopic dermatitis. Int Arch Allergy Immunol. 1994;104:104–106.
  • Sotiropoulou G, Pampalakis G. Kallikrein-related peptidases: bridges between immune functions and extracellular matrix degradation. Biol Chem. 2010;391:321–331.
  • Carrier Y, Ma HL, Ramon HE, et al. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol. 2011;131:2428–2437.
  • Gruver AL, Sempowski GD. Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol. 2008;84:915–923.
  • Kondo S, Sauder DN. Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Eur J Immunol. 1997;27:1713–1718.
  • Kutsch CL, Norris DA, Arend WP. Tumor necrosis factor-alpha induces interleukin-1 alpha and interleukin-1 receptor antagonist production by cultured human keratinocytes. J Invest Dermatol. 1993;101:79–85.
  • Taniguchi K, Yamamoto S, Hitomi E, et al. Interleukin 33 is induced by tumor necrosis factor alpha and interferon gamma in keratinocytes and contributes to allergic contact dermatitis. J Investig Allergol Clin Immunol. 2013;23:428–434.
  • Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: a comprehensive review. J Autoimmun. 2015;64:66–73.
  • Ahmad S, Azid NA, Boer JC, et al. The key role of TNF-TNFR2 interactions in the modulation of allergic inflammation: a review. Front Immunol. 2018;9:2572.
  • Monaco C, Nanchahal J, Taylor P, et al. Anti-TNF therapy: past, present and future. Int Immunol. 2015;27:55–62.
  • Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62.
  • Fontao L, Laffitte E, Briot A, et al. Infliximab infusions for netherton syndrome: sustained clinical improvement correlates with a reduction of thymic stromal lymphopoietin levels in the skin. J Invest Dermatol. 2011;131:1947–1950. DOI:10.1038/jid.2011.124
  • Roda Â, Mendonça-Sanches M, Travassos AR, et al. Infliximab therapy for Netherton syndrome: a case report. JAAD Case Rep. 2017;3:550–552.
  • Hernández MV, Meineri M, Sanmartí R. Skin lesions and treatment with tumor necrosis factor alpha antagonists. Reumatol Clínica 2013;9:53–61. (English Ed). doi:10.1016/j.reuma.2012.04.007
  • Nakamura M, Lee K, Singh R, et al. Eczema as an adverse effect of anti-TNFα therapy in psoriasis and other Th1-mediated diseases: a review. J Dermatolog Treat. 2017;28:237–241.
  • Billi AC, Gudjonsson JE. Interleukin-17 receptor D: an orphan receptor finds a home in the skin. Sci Immunol. 2019;4(36):eaax0687.
  • Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585–600.
  • Li L, Huang L, Vergis AL, et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest. 2010;120:331–342.
  • Lin AM, Rubin CJ, Khandpur R, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187:490–500.
  • Paller AS. Pathogenesis-Based therapy with repurposed biologics for monogenic inflammatory skin disorders. JAMA Dermatol. 2020. DOI:10.1001/jamadermatol.2020.1018
  • Luchsinger I, Knöpfel N, Theiler M, et al. Secukinumab therapy for Netherton Syndrome. JAMA Dermatol. 2020;156:907–911. DOI:10.1001/jamadermatol.2020.1019
  • Blanchard SK, Prose NS. Successful use of secukinumab in Netherton syndrome. JAAD Case Rep. 2020;6:577–578.
  • Barbieux C, Bonnet Des Claustres M, de la Brassinne M, et al. Duality of Netherton syndrome manifestations and response to ixekizumab. S0190–9622(20)32224–6. J Am Acad Dermatol. 2020; DOI:10.1016/j.jaad.2020.07.054.
  • Tait Wojno ED, Hunter CA, Stumhofer JS. The immunobiology of the interleukin-12 family: room for discovery. Immunity. 2019;50:851–870.
  • Swindell WR, Beamer MA, Sarkar MK, et al. RNA-seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front Immunol. 2018;9:1–20.
  • Yawalkar N, Egli F, Brand CU, et al. Antigen-presenting cells and keratinocytes express interleukin-12 in allergic contact dermatitis. Contact Dermatitis. 2000;42:18–22.
  • Yoon J, Leyva Castillo JM, Wang G, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147–2166.
  • Kulig P, Musiol S, Freiberger SN, et al. IL-12 protects from psoriasiform skin inflammation. Nat Commun. 2016;7:13466.
  • Teng MWL, Bowman EP, McElwee JJ, et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015;21:719–729.
  • Volc S, Maier L, Gritsch A, et al. Successful treatment of Netherton syndrome with ustekinumab in a 15-year-old girl. Br J Dermatol. 2020;183:165–167.
  • Ngiow SF, Teng MWL, Smyth MJ. A balance of interleukin-12 and −23 in cancer. Trends Immunol. 2013;34:548–555.
  • Young L, Czarnecki D. The rapid onset of multiple squamous cell carcinomas in two patients commenced on ustekinumab as treatment of psoriasis. Australas J Dermatol. 2012;53:57–60.
  • Levin AA, Gottlieb AB. Specific targeting of interleukin-23p19 as effective treatment for psoriasis. J Am Acad Dermatol. 2014;70:555–561.
  • Sofen H, Smith S, Matheson RT, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133:1032–1040.
  • Machado Á, Torres T. Spotlight on risankizumab and its potential in the treatment of plaque psoriasis: evidence to date. Psoriasis. 2018;8:83–92.
  • Galluzzo M, D’adamio S, Bianchi L, et al. Tildrakizumab for treating psoriasis. Expert Opin Biol Ther. 2017;17:645–657.
  • Junttila IS. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol. 2018;9:888.
  • Bieber T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy Eur J Allergy Clin Immunol. 2020;75:54–62.
  • Sastre J, Dávila I. Dupilumab: a new paradigm for the treatment of allergic diseases. J Investig Allergol Clin Immunol. 2018;28:139–150.
  • FDA. US Food & Drug Administration [Internet]. Silver Spring, MD: FDA approves first treatment for chronic rhinosinusitis with nasal polyps; 2019[ updated 2019 Jun 26; cited 2020 Aug 15]. https://www.fda.gov/news-events/press-announcements/fda-appro
  • Regeneron [Internet]. TARRYTOWN, N.Y. and PARIS: dupixent® (dupilumab) Approved for severe asthma by european commission. 2019 [ updated 2019 May 7; cited 2020 Aug 15]. https://investor.regeneron.com/index.php/node/22091/pdf.
  • Steuer AB, Cohen DE. Treatment of Netherton syndrome with dupilumab. JAMA Dermatol. 2020. DOI:10.1001/jamadermatol.2019.4608
  • Geha RS, Jabara HH, Brodeur SR. The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol. 2003;3:721–732.
  • Gomez G. Current strategies to inhibit high affinity FcεRI-mediated signaling for the treatment of allergic disease. Front Immunol. 2011;187:1–8.
  • Genentech [Internet]. San Francisco, CA: FDA Approves Genentech’s Xolair® (omalizumab) for Allergic Asthma in Children. [ updated 2016 Jul 7; cited 2020 Aug 16]. https://www.gene.com/media/press-releases/14632/2016-07-07/fda-approves-genent
  • Genentech [Internet]. San Francisco, CA: FDA Approves XOLAIR® (omalizumab) for subcutaneous use for people with chronic idiopathic urticarial (CIU), a form of chronic hives. [ updated 2014 Mar 21; cited 2020 Aug 16]. https://www.gene.com/me
  • Gasser P, Eggel A. Targeting IgE in allergic disease. Curr Opin Immunol. 2018;54:86–92.
  • Yalcin AD. A case of netherton syndrome: successful treatment with omalizumab and pulse prednisolone and its effects on cytokines and immunoglobulin levels. Immunopharmacol Immunotoxicol. 2016;38:162–166.
  • Stryk S, Siegfried EC, Knutsen AP. Selective antibody deficiency to bacterial polysaccharide antigens in patients with Netherton syndrome. Pediatr Dermatol. 1999;16:19–22.
  • Wasserman RL. Personalized Therapy: immunoglobulin replacement for antibody deficiency. Immunol Allergy Clin North Am. 2019;39:95–111.
  • Small AM, Cordoro KM. Netherton syndrome mimicking pustular psoriasis: clinical implications and response to intravenous immunoglobulin. Pediatr Dermatol. 2016;33:e222–3.
  • Zelieskova M, Banovcin P, Kozar M, et al. A novel SPINK5 mutation and successful subcutaneous immunoglobulin replacement therapy in a child with Netherton syndrome. Pediatr Dermatol. 2020;n/a:1–3.
  • Brembilla NC, Senra L, Boehncke WH. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol. 2018;9:1682.
  • Nies JF, Panzer U. IL-17C/IL-17RE: emergence of a Unique Axis in TH17 Biology. Front Immunol. 2020;11:1–12.
  • Foulkes AC, Warren RB. Brodalumab in psoriasis: evidence to date and clinical potential. Drugs Context. 2019;8:1–11.
  • Sawyer L, Fotheringham I, Wright E, et al. The comparative efficacy of brodalumab in patients with moderate-to-severe psoriasis : a systematic literature review and network meta- analysis. J Dermatolog Treat. 2018;29:557–568.
  • Guttman-Yassky E, Krueger JG. IL-17C: a unique epithelial cytokine with potential for targeting across the spectrum of atopic dermatitis and psoriasis. J Invest Dermatol. 2018;138:1467–1469.
  • Johnston A, Fritz Y, Dawes SM, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol. 2013;190:2252–2262.
  • Vandeghinste N, Klattig J, Jagerschmidt C, et al. Neutralization of IL-17C reduces skin inflammation in mouse models of psoriasis and atopic dermatitis. J Invest Dermatol. 2018;138:1555–1563.
  • MorphoSys [Internet]. Planegg/Munich, Germany, and Mechelen, Belgium: OR106 Clinical Development in Atopic Dermatitis Stopped. [ updated 2019 Oct 28; cited 2020 Aug 16]. https://www.morphosys.com/media-investors/media-center/morphosys-ag-mo
  • Guttman-Yassky E, Brunner PM, Neumann AU, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 2018;78:872–881.
  • Tsai YC, Tsai TF. Anti-interleukin and interleukin therapies for psoriasis: current evidence and clinical usefulness. Ther Adv Musculoskelet Dis. 2017;9:277–294.
  • Gudjonsson JE, Johnston A, Ellis CN. Novel systemic drugs under investigation for the treatment of psoriasis. J Am Acad Dermatol. 2012;67:139–147.
  • Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281:8–27.
  • Werman A, Werman-Venkert R, White R, et al. The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription. Proc Natl Acad Sci U S A. 2004;101:2434–2439.
  • Maier JA, Statuto M, Ragnotti G. Endogenous interleukin 1 alpha must be transported to the nucleus to exert its activity in human endothelial cells. Mol Cell Biol. 1994;14:1845–1851.
  • Afonina IS, Müller C, Martin SJ, et al. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity. 2015;42:991–1004.
  • Yao C, Karabasil MR, Purwanti N, et al. Tissue kallikrein mK13 is a candidate processing enzyme for the precursor of interleukin-1beta in the submandibular gland of mice. J Biol Chem. 2006;281:7968–7976.
  • LaRock CN, Todd J, LaRock DL, et al. IL-1β is an innate immune sensor of microbial proteolysis. Sci Immunol. 2016;1(2):eaah3539.
  • Swindell WR, Beamer MA, Sarkar MK, et al. RNA-Seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front Immunol. 2018;9:80.
  • Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50:778–795.
  • Barker JN, Mitra RS, Griffiths CE, et al. Keratinocytes as initiators of inflammation. Lancet. (London, England) 1991;337: 211–214.doi: 10.1016/0140-6736(91)92168-2
  • Kupper TS, Ballard DW, Chua AO, et al. Human keratinocytes contain mrna indistinguishable from monocyte interleukin lα and β mrna: keratinocyte epidermal cell-derived thymocyte-activating factor is identical to interleukin 1. J Exp Med. 1986;164:2095–2100.
  • Wood LC, Jackson SM, Elias PM, et al. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest. 1992;90:482–487.
  • Klicznik MM, Szenes-Nagy AB, Campbell DJ, et al. Taking the lead – how keratinocytes orchestrate skin T cell immunity. Immunol Lett. 2018;200:43–51.
  • Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci. 2018;89:3–10.
  • Dinarello CA, Simon A, Van Der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11:633–652.
  • Dinarello CA, van der Meer JWM. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–484.
  • Li J, Leyva-Castillo JM, Hener P, et al. Counterregulation between thymic stromal lymphopoietin– and IL-23–driven immune axes shapes skin inflammation in mice with epidermal barrier defects. J Allergy Clin Immunol. 2016;138:150–161.
  • Leslie KS, Tripathi SV, Nguyen TV, et al. An open-label study of anakinra for the treatment of moderate to severe hidradenitis suppurativa. J Am Acad Dermatol. 2014;70:243–251.
  • Tauber M, Viguier M, Alimova E, et al. Partial clinical response to anakinra in severe palmoplantar pustular psoriasis. Br J Dermatol. 2014;171:646–649.
  • Viguier M, Guigue P, Pagès C, et al. Successful treatment of generalized pustular psoriasis with the interleukin-1-receptor antagonist Anakinra: lack of correlation with IL1RN mutations. Ann Int Med. United States. 2010;66–67. DOI:10.7326/0003-4819-153-1-201007060-00030
  • Hüffmeier U, Wätzold M, Mohr J, et al. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br J Dermatol. England. 2014;202–204. DOI:10.1111/bjd.12548
  • Rossi-Semerano L, Piram M, Chiaverini C, et al. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics. 2013;132(4):e1040-7.
  • Ultsch M, Bevers J, Nakamura G, et al. Structural basis of signaling blockade by anti-IL-13 antibody lebrikizumab. J Mol Biol. 2013;425:1330–1339.
  • Hanania NA, Korenblat P, Chapman KR, et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med. 2016;4:781–796.
  • Guttman-Yassky E, Blauvelt A, Eichenfield LF, et al. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 Inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol. 2020;156:411–420.
  • Popovic B, Breed J, Rees DG, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13R α 1 and IL-13R α 2. J Mol Biol. 2017;429:208–219.
  • Brightling CE, Chanez P, Leigh R, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3:692–701.
  • Wollenberg A, Howell MD, Guttman-Yassky E, et al. Treatment of atopic dermatitis with tralokinumab, an anti–IL-13 mAb. J Allergy Clin Immunol. 2019;143:135–141.
  • LeoPharma [Internet]. Ballerup, Danemark: LEO Pharma announces positive top-line results for tralokinumab from three Phase 3 studies in adult patients with moderate-to-severe AD. [ updated 2019 Dec 11; cited 2020 Aug 18]. https://leo-pharma
  • Boguniewicz M, Alexis AF, Beck LA, et al. Expert perspectives on management of moderate-to-severe atopic dermatitis: a multidisciplinary consensus addressing current and emerging therapies. J Allergy Clin Immunol Pract. 2017;5:1519–1531.
  • Nygaard U, Vestergaard C, Deleuran M. Emerging treatment options in atopic dermatitis: systemic therapies. Dermatology. 2018;233:344–357.
  • Shrimanker R, Borg K, Connolly C, et al. Late Breaking Abstract - Effect of timapiprant, a DP2 antagonist, on airway inflammation in severe eosinophilic asthma. Eur Respir J. 2019;54:RCT3784.
  • Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–689.
  • Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43:29–40.
  • Konishi T, Tsuda T, Sakaguchi Y, et al. Upregulation of interleukin-33 in the epidermis of two Japanese patients with Netherton syndrome. J Dermatol. 2014;41:258–261.
  • AnaptysBio[Internet]. San Diego. CA: Etokimab; c2020 . [cited 2020 Jul 02]. https://www.anaptysbio.com/pipeline/etokimab/
  • Furue M, Yamamura K, Kido-Nakahara M, et al. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy Eur J Allergy Clin Immunol. 2018;73:29–36.
  • Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5:752–760.
  • Ruzicka T, Hanifin JM, Furue M, et al. Anti–interleukin-31 receptor a antibody for atopic dermatitis. N Engl J Med. 2017;376:826–835.
  • Silverberg JI, Pinter A, Pulka G, et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J Allergy Clin Immunol. 2020;145:173–182.
  • Kabashima K, Furue M, Hanifin JM, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis: randomized, phase II, long-term extension study. J Allergy Clin Immunol. 2018;142:1121–1130.
  • Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020;19:253–275.
  • Stockley R, De Soyza A, Gunawardena K, et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med. 2013;107:524–533.
  • Mereo BioPharma [Internet]. London, UK: MPH-966 (ALVELESTAT) c2020. [cited 2020 Aug 08]. https://www.mereobiopharma.com/pipeline/mph-966-alvelestat/
  • Sullivan GP, Henry CM, Clancy DM, et al. Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases. Cell Death Dis. 2018;9(3):378.
  • Zani ML, Baranger K, Guyot N, et al. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci. 2009;18:579–594.
  • Oikonomopoulou K, Diamandis EP, Hollenberg MD, et al. Proteinases and their receptors in inflammatory arthritis: an overview. Nat Rev Rheumatol. 2018;14:170–180.
  • Rattenholl A, Steinhoff M. Role of proteinase-activated receptors in cutaneous biology and disease. Drug Dev Res. 2003;59:408–416.
  • Shpacovitch V, Feld M, Bunnett NW, et al. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol. 2007;28:541–550.
  • Nystedt S, Emilsson K, Wahlestedt C, et al. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci. 1994;91(9208):LP– 9212. DOI:10.1073/pnas.91.20.9208
  • Molino M, Barnathan ES, Numerof R, et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem. 1997;272:4043–4049.
  • Ramachandran R, Mihara K, Chung H, et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR 2). J Biol Chem. 2011;286:24638–24648.
  • Oikonomopoulou K, Hansen KK, Saifeddine M, et al. Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem. 2006;281:32095–32112.
  • Adams MN, Ramachandran R, Yau MK, et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther. 2011;130:248–282.
  • Henehan M, De Benedetto A. Update on protease-activated receptor 2 in cutaneous barrier, differentiation, tumorigenesis and pigmentation, and its role in related dermatologic diseases. Exp Dermatol. 2019;28:877–885.
  • Wakita H, Furukawa F, Takigawa M. Thrombin and trypsin induce granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc Assoc Am Physicians. 1997;109:190–207.
  • Hou L, Kapas S, Cruchley AT, et al. Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology. 1998;94:356–362.
  • Iwakiri K, Ghazizadeh M, Jin E, et al. Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris. J Invest Dermatol. 2004;122:937–944.
  • Buddenkotte J, Stroh C, Engels IH, et al. Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol. 2005;124:38–45.
  • Aoki M, Yamaguchi R, Yamamoto T, et al. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2. Blood Cells Mol Dis. 2015;54:353–359.
  • Yamaguchi R, Yamamoto T, Sakamoto A, et al. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2. Blood Cells Mol Dis. 2015;55:21–26.
  • Zhao J, Munanairi A, Liu X, et al. PAR2 mediates itch via TRPV3 signaling in keratinocytes. J Invest Dermatol. 2020;2:1–9.
  • Seiberg M, Paine C, Sharlow E, et al. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000;254:25–32.
  • Ramachandran R, Noorbakhsh F, Defea K, et al. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov. 2012;11:69–86.
  • Zhu Y, Underwood J, Macmillan D, et al. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity. J Allergy Clin Immunol. 2017;140:1310–1322.
  • Böhm SK, Khitin LM, Grady EF, et al. Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem. 1996;271:22003–22016.
  • Frateschi S, Camerer E, Crisante G, et al. PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat Commun. 2011;2:161.
  • Barr TP, Garzia C, Guha S, et al. PAR2 pepducin-based suppression of inflammation and itch in atopic dermatitis models. J Invest Dermatol. 2019;139:412–421.
  • Comeau MR, Ziegler SF. The influence of TSLP on the allergic response. Mucosal Immunol. 2010;3:138–147.
  • Ziegler SF, Artis D. review Sensing the outside world : TSLP regulates barrier immunity. Nat Publ Gr. 2010;11:289–293.
  • Simpson EL, Parnes JR, She D, et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: A randomized phase 2a clinical trial. J Am Acad Dermatol. 2019;80:1013–1021.
  • Marone G, Spadaro G, Braile M, et al. Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin Investig Drugs. 2019;28:931–940.
  • Gauvreau GM, O’Byrne PM, Boulet L-P, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370:2102–2110.
  • Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377:936–946.
  • Venkataramani S, Low S, Weigle B, et al. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun. 2018;504:19–24.
  • Ito T, Wang Y-H, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202:1213–1223.
  • Webb GJ, Hirschfield GM, Lane PJL. OX40, OX40L and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol. 2016;50:312–332.
  • Ziegler SF, Liu Y-J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol. 2006;7:709–714.
  • Guttman-Yassky E, Pavel AB, Zhou L, et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144:482–493.
  • Kvist-hansen A, Hansen PR, Skov L. Systemic Treatment of Psoriasis with JAK Inhibitors . Dermatol Ther (Heidelb). 2020;10:29–42.
  • Damsky W, King BA. The promise of a new drug class. J Am Dermatol. 2017;76: 736–744. DOI:10.1016/j.jaad.2016.12.005
  • Ciechanowicz P, Rakowska A, Sikora M, et al. JAK-inhibitors in dermatology: current evidence and future applications. J Dermatolog Treat. 2019;30:648–658.
  • Khavari PA, Rollman O, Vahlquist A. Cutaneous gene transfer for skin and systemic diseases. J Intern Med. 2002;252:1–10.
  • Roedl D, Oji V, Buters JTM, et al. rAAV2-mediated restoration of LEKTI in LEKTI-deficient cells from Netherton patients. J Dermatol Sci. 2011;61:194–198.
  • Di W-L, Mellerio JE, Bernadis C, et al. Phase I study protocol for ex vivo lentiviral gene therapy for the inherited skin disease, Netherton syndrome. Hum Gene Ther Clin Dev. 2013;24:182–190.
  • Di WL, Lwin SM, Petrova A, et al. Generation and clinical application of gene-modified autologous epidermal sheets in netherton syndrome: lessons learned from a phase 1 trial. Hum Gene Ther. 2019;30:1067–1078. DOI:10.1089/hum.2019.049
  • Krystal Biotech [Internet]. Pittsburgh, PA: our targets; c2020. 2020 [cited 2020 Aug 08]. https://www.krystalbio.com/patients-and-families/our-targets/
  • Agarwal P, Krishnan S, Freedman JC, inventors; Krystal Biotech Inc, assignee. Compositions and methods for the treatment of Netherton syndrome. US patent US 2020/0093874A1. 2020 Mar 26 .
  • Geusens B, Sanders N, Prow T, et al. Cutaneous short-interfering RNA therapy. Expert Opin Drug Deliv. 2009;6:1333–1349.
  • Leachman SA, Hickerson RP, Schwartz ME, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther. 2010;18:442–446.
  • Zakrewsky M, Kumar S, Mitragotri S. Nucleic acid delivery into skin for the treatment of skin disease: proofs-of-concept, potential impact, and remaining challenges. J Control Release. 2015;219:445–456.
  • Kigasawa K, Kajimoto K, Hama S, et al. Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic dermatitis-like model rat. Int J Pharm. 2010;383:157–160.
  • Hashim IIA, Motoyama K, Abd-ElGawad A-EH, et al. Potential use of iontophoresis for transdermal delivery of NF-κB decoy oligonucleotides. Int J Pharm. 2010;393:128–135.
  • Desai PR, Marepally S, Patel AR, et al. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170:51–63.
  • Bracke S, Carretero M, Guerrero-Aspizua S, et al. Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: development of siRNA SECosome-based novel therapies. Exp Dermatol. 2014;23:199–201.
  • Kim ST, Lee K-M, Park H-J, et al. Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med. 2009;11:26–37.
  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312(1027):LP– 1030. DOI:10.1126/science.1125559
  • Giljohann DA, Seferos DS, Prigodich AE, et al. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc. 2009;131:2072–2073.
  • Cutler JI, Auyeung E, Mirkin CA. Spherical nucleic acids. J Am Chem Soc. 2012;134:1376–1391.
  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A. 2012;109:11975–11980.
  • Lewandowski KT, Thiede R, Guido N, et al. Topically delivered tumor necrosis factor-α–targeted gene regulation for psoriasis. J Invest Dermatol. 2017;137:2027–2030.
  • Dermelix Biotherapeutics. [Internet]. King of Prussia, PA: pipeline ; c2020. [cited 2020 Aug 04]. http://dermelix.com/pipeline/
  • Zhvania P, Hoyle NS, Nadareishvili L, et al. Phage therapy in a 16-year-old boy with netherton syndrome. Front Med. 2017;4:1–5.
  • Motta JP, Bermúdez-Humarán LG, Deraison C, et al. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med. 2012;4(158):158ra144.
  • Bermúdez-Humarán LG, Motta JP, Aubry C, et al. Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Fact. 2015;14:1–11.
  • Azitra Inc [Internet]. Farmington, CT: our pipeline ; c2020. [cited 2020 Jul 07]. https://azitrainc.com/pipeline/