31
Views
2
CrossRef citations to date
0
Altmetric
Review

Gut microbial profiling as a therapeutic and diagnostic target for managing primary biliary cholangitis.

, , , &
Pages 507-514 | Received 06 Nov 2020, Accepted 15 Dec 2020, Published online: 29 Dec 2020

References

  • De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195:74–85.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.
  • Maroni L, Ninfole E, Pinto C, et al. Gut-liver axis and inflammasome activation in cholangiocyte pathophysiology. Cells. 2020;9:736.
  • Brenner DA, Paik YH, Schnabl B. Role of gut microbiota in liver disease. J Clin Gastroenterol. 2015;49:S25–7.
  • Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology. 2020;159:S0016–5085(20)34839–3. Online ahead of print.
  • Alvaro D, Carpino G, Craxi A, et al. Primary Biliary Cholangitis management: controversies, perspectives, and daily practice implications from an expert panel. Liver Int. 2020;40:2590–2601. Online ahead of print.
  • Selmi C, De Santis M, Cavaciocchi F, et al. Infectious agents and xenobiotics in the aetiology of primary biliary cirrhosis. Dis Markers. 2010;29:287–299.
  • Floreani A, Leung PSC, Gershwin ME. Environmental basis of autoimmunity. Clin Rev Allerg Immunol. 2016;50:287–300.
  • Mattner J, Savage PB, Leung P, et al. Liver autoimmunity triggered by microbial activation of natural killers T cells. Cell Host Microbe. 2008;3:304–315.
  • Bogdanos DP, Baum H, Okamoto M, et al. Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its lactobacillus mimic. Hepatology. 2005;42:458–465.
  • Burroughs AK, Rosenstein IJ, Epstein O, et al. Bacteriuria and primary biliary cirrhosis. Gut. 1984;25:133–137.
  • Bogdanos DP, Baum H, Butler P, et al. Association between the primary biliary cirrhosis specific anti-sp100 antibodies and recurrent urinary tract infection. Dig Liver Dis. 2003;35:801–805.
  • Gershwin ME, Selmi C, Worman HJ, et al. The USA PBC Epidemiology Group. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology. 2005;42:1194–1202.
  • Daniels JA, Torbenson M, Anders RA, et al. Immunostaining of plasma cells in primary biliary cirrhosis. Am J Clin Pathol. 2009;131:243–249.
  • Moreira RK, Revetta F, Koehler E, et al. Diagnostic utility of IgG and IgM immunohistochemistry in autoimmune liver disease. World J Gastroenterol. 2010;16:453–457.
  • Feld JJ, Meddings J, Heathcote EJ. Abnormal intestine permeability in primary biliary cirrhosis. Dig Dis Sci. 2006;51:1607–1613.
  • Floreani A, Baragiotta A, Pizzuti D, et al. Mucosal IgA defect in primary biliary cirrhosis. Am J Gastroenterol. 2002;97:508–510.
  • Sheth P, Delos Santos N, Seth A, et al. Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by c-Src-, TLR4-, and LBP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2007;293:G308–G318.
  • Tabibian JH, O’Hara SP, Splinter PL, et al. Cholangiocyte senescence by way of N-ras activation is characteristic of primary sclerosing cholangitis. Hepatology. 2014;59:2263–2275.
  • Maldonado R, Sa-Correira I, Valvano M. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 2016;40:480–493.
  • Wang A-P, Migita K, Ito M, et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun. 2005;25:85–91.
  • Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–335.
  • Wahlstrom A, Sayin SI, Marschall H-U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41–50.
  • Sayin SI, Wahlstrom A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225–235.
  • Pean N, Doignon I, Tordjmann T. Gut microbiota and bile acids: an old story revisited (again). Clin Res Hepatol Gastroenterol. 2014;38:129–131.
  • Isaacs-Ten A, Echeandia M, Moreno-Gonzalez M, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability. Hepatology. 2020. in press. DOI:10.1002/hep.31228
  • Sato K, Meng F, Fava G, et al. Functional roles of gut bacteria imbalance in cholangiopathies. Liver Res. 2019;3:40–45.
  • Sabino J, Vieira-Silva S, Machiels K, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 2016;65:1681–1689.
  • Kummen M, Holm K, Anmarkrud JA, et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut. 2017;66:611–619.
  • Ruhlemann M, Liwinski T, Heinsen F-A, et al. Consistent alterations in faecal microbiomes of patients with primary sclerosing cholangitis independent of associated colitis. Aliment Pharmacol Ther. 2019;50:580–589.
  • Lv L-X, Fang D-Q, Shi D, et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol. 2016;18:2272–2286.
  • Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018;67:534–541.
  • Hiramatsu K, Harada K, Tsuneyama K, et al. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis. J Hepatol. 2000;33:9–18.
  • Pereira P, Aho V, Arola J, et al. Bile microbiota in primary sclerosing cholangitis: impact on disease progression and development of biliary dysplasia. Plos One. 2017;12:e0182924.
  • Kong L, Lu Y, Zhang S, et al. Role of nutrition, gene polymorphism, and gut microbiota in non-alcoholic fatty liver disease. Discov Med. 2017;24:95–106.
  • Zhao L-N, Yu T, Lan S-Y, et al. Probiotics can improve the clinical outcomes of hepatic encephalopathy: an update meta-analysis. Clin Res Hepatol Gastroenterol. 2015;39:674–682.
  • Shukla S, Shukla A, Mehboob S, et al. Meta-analysis: the effect of gut flora modulation using prebiotics, probiotics and symbiotics on minimal hepatic encephalopathy. Aliment Pharmacol Ther. 2011;33:662–671.
  • Kuiper EM, Hansen BE, de Vries RA, et al. Improved prognosis of patients with primary biliary cirrhosis that have a biochemical response to ursodeoxycholic acid. Gastroenterology. 2009;136:1281–1287.
  • Zhang D-Y, Zhu L, Tseng Y-J, et al. The protective effect and mechanism of the FXR agonist obeticholic acid via targeting gut microbiota in non-alcoholic fatty liver disease. Drug Des Devel Ther. 2019;13:2249–2270.
  • Ubeda M, Lazio M, Munoz L, et al. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats. J Hepatol. 2016;64:1049–1957.
  • Parmer C, Hung A, Yan KG, et al. Changes in intestinal microbiome in rats with cirrhosis and ascites: comparison between obeticholic acid (OCA) and placebo. Hepatology. 2019;70(suppl. 1):1098A (Abs 1821).
  • Verkebe L, Farre R, Verbinnen B, et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am J Pathol. 2015;185:409–419.
  • Kang SH, Lee YB, Lee J-H, et al. Rifaximin treatment is associated with reduced risk of cirrhotic complications and prolonged overall survival in patients experiencing hepatic encephalopathy. Aliment Pharmacol Ther. 2017;46:845–855.
  • Farkkila M, Karvonen AL, Nurmi H, et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology. 2004;40:1379–1386.
  • Silveira MG, Torok NJ, Gassard AA, et al. Minocycline in the treatment of patients with primary sclerosing cholangitis: results of a pilot study. Am J Gastroenterol. 2009;104:83–88.
  • Tabibian JH, Weeding E, Jorgensen RA, et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis – a pilot study. Aliment Pharmacol Ther. 2013;37:604–612.
  • Bajaj JS, Khoruts A. Microbiota changes and intestinal microbiota transplantation in liver disease and cirrhosis. J Hepatol. 2020;72:1003–1027.
  • Bajaj JS, Salzman N, Acharya C, et al. Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis. JCI Insight. 2019;4:e133410.
  • Allegretti JB, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol. 2019;114:1071–1079.
  • Fraher MH, O’Toole PW, Quigley EMM. Techniques used to characterize the microbiota: a guide for clinicians. Nat Rev Gastroenterol Hepatol. 2012;9:312–322.
  • Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–R249.
  • Breitbart M, Hewson I, Felts B, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185:6220–6223.
  • Hiramatsu K, Harada K, Tsuneyama K, et al. Amplification and sequence analysis of partial bacterial 16S ribosomal gene in gallbladder bile from patients with primary biliary cirrhosis. J Hepatol. 2000;33:9–18.
  • Chen Y, Ji F, Shi D, et al. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with aetiology. Sci Rep. 2016;6:34055.
  • Nakamoto N, Sasaki N, Aoki R, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol. 2019;4:492–503.
  • Liwinski T, Zenouzi R, John C. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut. 2020;69:665–672.
  • Olsson R, Boberg KM, Schaffalistky De Mickadell O, et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology. 2005;129:1464–1472.
  • Lindor KD, Kowdley KV, Luketic VAC, et al. High dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50:808–814.
  • Tabibian JH, Lindon KD. Ursodeoxycholic acid in primary sclerosing cholangitis: if withdrawal is bad, then administration is good (right?). Hepatology. 2014;60:785–788.
  • Arizumi T, Tazuma S, Nakazawa T, et al. The association of UDCA treatment with long-term outcome and biliary tract cancer in patients with primary sclerosing cholangitis. Hepatology. 2020;72(Suppl 1):Abs 100.
  • Kulkarni AV, Tevethia HV, Da PK, et al. Obeticholic acid in liver disease – a systematic review and meta-analysis. Hepatology. 2020;72(Suppl. 1):Abs 1685.
  • Gadaleta RM, Garcia-Irigoyen O, Cariello M, et al. Fibroblast growth factor 19 modulates intestinal microbiota and inflammation in presence of farnesoid X receptor. EBiomedicine. 2020;52:102719.
  • Russell DW. Fifty years of advanced in the bile acid synthesis and metabolism. J Lipid Res. 2009;50(Suppl):S120–S125.
  • May MJ, Wigg AJ, Leggett BA, et al. NGM282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double-blind, placebo-controlled trial. Hepatol Commun. 2018;2:1–14.
  • Avila MA, Moschetta A. The FXR-FGF19 gut-liver axis as a novel “hepatostat”. Gastroenterology. 2015;149:536–540.
  • Trivedi HD, Lizaola B, Tapper EB, et al. Management of pruritus in primary biliary cholangitis: a narrative review. Am J Med. 2017;130:744.e1–744.e7.
  • Namasivayan S, Maiga M, Yan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbioma. 2017;5:71–88.
  • Henao-Mejia J, Elinav E, Thaiss CA, et al. Role of the intestinal microbioma in liver disease. J Autoimmun. 2013;46:66–73.
  • Ruhlemann MC, Heinsen F-A, Zenouzi R, et al. Faecal microbiota profiles as diagnostic biomarkers in primary sclerosing cholangitis. Gut. 2017;66:753–754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.