630
Views
48
CrossRef citations to date
0
Altmetric
Reviews

The nature of the assembly process in chromonic liquid crystals

, , , , &
Pages 1-27 | Received 27 Feb 2015, Accepted 27 Feb 2015, Published online: 10 Apr 2015

References

  • Sandquist H. Anisotropic aqueous solution. Ber Dtsch Chem Ges. 1915;48:2054–2055. doi: 10.1002/cber.191504802105
  • Jelley EE. Spectral absorption and fluorescence of dyes in the molecular state. Nature. 1936;138:1009–1010. doi: 10.1038/1381009a0
  • Jelley EE. Molecular, nematic and crystal states of i: i-diethyl-cyanine chloride. Nature. 1937;139:631–632. doi: 10.1038/139631b0
  • Schiebe G. Über die veränderlichkeit der absorptionsspektren in lösungen und die nebenvalenzen als ihre ursache. Angew Chem Int Ed Engl. 1937;50:212–219. doi: 10.1002/ange.19370501103
  • Hartshorne NH, Woodward GD. Mesomorphism in the system disodium chromoglycate-water. Mol Cryst Liq Cryst. 1973;23:343–368. doi: 10.1080/15421407308083381
  • Lydon JE. New models for the mesophases of disodium cromoglycate (INTAL). Mol Cryst Liq Cryst. 1980;64:19–24. doi: 10.1080/01406568008072650
  • Jones F, Kent DR. Aggregation and lyotropic mesophase formation in anionic dye solutions. Dyes Pigments. 1980;1:39–48. doi: 10.1016/0143-7208(80)80005-2
  • Attwood TK, Lydon JE. Lyotropic mesophase formation by anti-asthmatic drugs. Mol Cryst Liq Cryst. 1984;108:349–357. doi: 10.1080/00268948408078686
  • Perahia D, Wachtel EJ, Luz Z. NMR and X-ray studies of the chromonic lyomesophases formed by some xanthone derivatives. Liq Cryst. 1991;9:479–492. doi: 10.1080/02678299108033147
  • Tiddy GJT, Mateer DL, Ormerod AP, Harrison WJ, Edwards DJ. Highly ordered aggregates in dilute dye-water systems. Langmuir. 1995;11:390–393. doi: 10.1021/la00002a002
  • Lydon J. Chromonics. In: Demus D, Goodby J, Gray GW, Spiess H-W, Vill V, editors. Handbook of liquid crystals. Vol. 2B. New York (NY): Wiley-VCH; 1998. p. 981–1007.
  • TamChang SW, Huang L. Chromonic liquid crystals: properties and applications as functional materials. Chem Commun. 2008;2008:1957–1967. doi: 10.1039/b714319b
  • Chen Z, Lohr A, Saha-Moller CR, Wurthner F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem Soc Rev. 2009;38:564–584. doi: 10.1039/B809359H
  • Lydon J. Chromonic review. J Mater Chem. 2010;20:10071–10099. doi: 10.1039/b926374h
  • Lydon J. Chromonic liquid crystalline phases. Liq Cryst. 2011;38:1663–1681. doi: 10.1080/02678292.2011.614720
  • Park HS, Lavrentovich OD. Lyotropic Chromonic liquid crystals: emerging applications. In: Li Q, editor. Liquid crystals beyond displays: chemistry, physics, and applications. Hoboken (NJ): John Wiley & Sons; 2012. p. 449–484.
  • Lydon J. Chromonic liquid crystals. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P, editors. Handbook of liquid crystals. Vol. 6. Weinheim: Wiley-VCH; 2014. p. 439–483.
  • Stegemeyer H, Stockel F. Anisotropic structures in aqueous solutions of aggregated pseudoisocyanine dyes. Ber Bunsenes Phys Chem. 1996;100:9–14. doi: 10.1002/bbpc.19961000104
  • Harrison WJ, Mateer DL, Tiddy GJT. Liquid-crystalline j-aggregates formed by aqueous ionic cyanine dyes. J Chem Phys. 1996;100:2310–2321. doi: 10.1021/jp952532l
  • Bykov VA, Sharimanov YG, Mrevlishvili GM, Mdzinarashvili TD, Metreveli NO, Kakabadze GR. Phase diagram for aqueous solutions of benzopurpurin 4b organic dye and effect of water on stabilization of lyotropic liquid-crystalline structures. Mol Matter. 1992;1:73–83.
  • McKitterick CB, Erb-Satullo NL, LaRacuente ND, Dickinson AJ, Collings PJ. Aggregation properties of the chromonic liquid crystal benzopurpurin 4b. J Phys Chem B. 2010;114:1888–1896. doi: 10.1021/jp910136p
  • Rodriguez-Abreu C, Torres CA, Tiddy GJT. Chromonic liquid crystalline phases of pinacyanol acetate: characterization and use as templates for the preparation of mesoporous silica nanofibers. Langmuir. 2011;27:3067–3073. doi: 10.1021/la1048024
  • Mills EA, Regan MH, Stanic V, Collings PJ. Large assembly formation via a two-step process in a chromonic liquid crystal. J Phys Chem B. 2012;116:13506–13515. doi: 10.1021/jp306135w
  • von Berlepsch H, Ludwig K, Bottcher C. Pinacyanol chloride forms mesoscopic H- and J-aggregates in aqueous solution – a spectroscopic and cryo-transmission electron microscopy study. Phys Chem Chem Phys. 2014;16:10659–10668. doi: 10.1039/c4cp00967c
  • Gao M, Kim Y, Zhang C, Borshch V, Zhou S, Park H, Jakli A, Lavrentovich O, Tamba M, Kohlmeier A, Mehl G, Weissflog W, Studer D, Zuber B, Gnagi H, Lin F. Direct observation of liquid crystals using cryo-tem: specimen preparation and low-dose imaging. Microsc Res Tech. 2014;77:754–772. doi: 10.1002/jemt.22397
  • Martin RB. Comparisons of indefinite self-association models. Chem Rev. 1996;96:3043–3064. doi: 10.1021/cr960037v
  • Gelbart WM, Ben-Shaul AJ. The “new” science of “complex fluids”. Phys Chem. 1996;100:13169–13189. doi: 10.1021/jp9606570
  • Smulders MMJ, Nieuwenhuizen MML, deGreef TFA, vanderSchoot P, Schenning APHJ, Meijer EW. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem Eur J. 2010;16:362–367. (Supporting Information). doi: 10.1002/chem.200902415
  • van der Schoot P. Theory of supramolecular polymerization. In: Ciferri A, editor. Supramolecular polymers. 2nd ed. Boca Raton (FL): CRC Press; 2005. p. 77–106.
  • Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta. 2009;1794:375–397. doi: 10.1016/j.bbapap.2008.10.016
  • Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. The kinetics and mechanisms of amyloid formation. In: Otzen DE, editor. Amyloid fibrils and prefibrillar aggregates: molecular and biological properties. Weinheim: Wiley-VCH; 2013. p. 183–209.
  • Michaels TCT, Knowles TPJ. Mean-field master equation formalism for biofilament growth. Am J Phys. 2014;82:476–483. doi: 10.1119/1.4870004
  • Taylor MP, Herzfeld J. A model for nematic and columnar ordering in a self-assembling system. Langmuir. 1990;6:911–915. doi: 10.1021/la00095a004
  • Taylor MP, Herzfeld J. Shape anisotropy and ordered phases in reversibly assembling lyotropic systems. Phys Rev A. 1991;43:1892–1905. doi: 10.1103/PhysRevA.43.1892
  • Taylor MP, Herzfeld J. Liquid-crystal phases of self-assembled molecular aggregates. J Phys Condens Matter. 1993;5:2651–2678. doi: 10.1088/0953-8984/5/17/002
  • Cates ME, Candau SJ. Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter. 1990;2:6869–6892. doi: 10.1088/0953-8984/2/33/001
  • Edwards RG, Henderson JR, Pinning RL. Simulation of self-assembly and lyotropic liquid crystal phases in model discotic solutions. Mol Phys. 1995;86:567–598. doi: 10.1080/00268979500102211
  • Maiti PK, Lansac Y, Glaser MA, Clark NA. Isodesmic self-assembly in lyotropic chromonic systems. Liq Cryst. 2002;29:619–626. doi: 10.1080/02678290110113838
  • Lu XJ, Kindt JT. Monte Carlo simulation of the self-assembly and phase behavior of semiflexible equilibrium polymers. J Chem Phys. 2004;120:10328–10338. doi: 10.1063/1.1729855
  • Kuriabova T, Betterton MD, Glaser MA. Linear aggregation and liquid-crystalline order: comparison of monte carlo simulation and analytic theory. J Mater Chem. 2010;20:10366–10383. doi: 10.1039/c0jm02355h
  • Mohanty S, Chou S-H, Brostrom M, Aguilera J. Predictive modeling of self assembly of chromonics materials. Mol Simul. 2006;32:1179–1185. doi: 10.1080/08927020601059919
  • Chami F, Wilson MR. Molecular order in a chromonic liquie crystal: a molecular simulation study of the anionic axo dye sunset yellow. J Am Chem Soc. 2010;132:7794–7802. doi: 10.1021/ja102468g
  • Akinshina A, Walker M, Wilson MR, Tiddy GJT, Masters AJ, Carbone P. Thermodynamics of the self-assembly of non-ionic chromonic molecules using atomistic simulations. The case of tp6eo2m in aqueous solution. Soft Matter. 2014;11:680–691. doi: 10.1039/C4SM02275K
  • Walker M, Masters AJ, Wilson MR. Self-assembly and mesophase formation in a non-ionic chromonic liquid crystal system: insights from dissipative particle dynamics simulations. Phys Chem Chem Phys. 2014;16:23074–23081. doi: 10.1039/C4CP03092C
  • Dickinson AJ, LaRacuente ND, McKitterick CB, Collings PJ. Aggregate structure and free energy changes in chromonic liquid crystals. Mol Cryst Liq Cryst. 2009;509:9/[751]–20/[762]. doi: 10.1080/15421400903051044
  • Collings PJ, Dickinson AJ, Smith EC. Molecular aggregation and chromonic liquid crystals. Liq Cryst. 2010;37:701–710. doi: 10.1080/02678292.2010.481910
  • Agra-Kooijman DM, Singh G, Lorenz A, Collings PJ, Kitzerow H-S, Kumar S. Columnar molecular aggregation in the aqueous solutions of disodium cromoglycate. Phys Rev E. 2014;89:062504-1–062504-6.
  • Park H-S, Kang S-W, Tortora L, Nastishin Y, Finotello D, Kumar S, Lavrentovich OD. Self-assembly of lyotropic chromonic liquid crystal sunset yellow and effects of ionic additives. J Phys Chem B. 2008;112:16307–16319. doi: 10.1021/jp804767z
  • Joshi L, Kang S-W, Agra-Kooijman DM, Kumar S. Concentration, temperature, and pH dependence of sunset yellow aggregates in aqueous solutions: an X-ray investigation. Phys Rev E. 2009;80:041703-1–041703-8. doi: 10.1103/PhysRevE.80.041703
  • Regan MH, Collings PJ. Unpublished raw data. 2015.
  • Neumann B, Huber K, Pollmann P. A comparative experimental study of the aggregation of acid red 266 in aqueous solution by use of F-NMR, UV/vis spectroscopy and static light scattering. Phys Chem Chem Phys. 2000;2:3687–3695. doi: 10.1039/b004172f
  • Mercado BR, Nieser KJ, Collings PJ. Cooperativity of the assembly proces in a low concentration chromonic liquid crystal. J Phys Chem. 2014;118:13312–13320. doi: 10.1021/jp510025j
  • Mercado BR, Collings PJ. Unpublished raw data. 2015.
  • Goldstein JN, Collings PJ. Unpublished raw data. 2015.
  • Jonkheijm P, van der Schoot P, Schenning APHJ, Meijer EW. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science. 2006;313:80–83. doi: 10.1126/science.1127884
  • Neumann B. On the aggregation behavior of pseudoisocyanine chloride in aqueous solution as probed by UV/vis spectroscopy and static light scattering. J Phys Chem. 2001;105:8268–8274. doi: 10.1021/jp0111259
  • Nastishin YuA, Liu H, Shiyanovskii SV, Lavrentovich OD, Kostko AF, Anisimov MA. Pretransitional fluctuations in the isotropic phase of a lyotropic chromonic liquid crystal. Phys Rev E. 2004;70:051706-1–051706-9. doi: 10.1103/PhysRevE.70.051706
  • Bertrand CE, Linegar KL, Kostko AF, Anisimov MA. Multiscale dynamics of pretransitional fluctuations in the isotropic phase of a lyotropic liquid crystal. Phys Rev E. 2009;79:041704-1–041704-13. doi: 10.1103/PhysRevE.79.041704
  • Yu LJ, Saupe A. Deuteron resonance of DO of nematic disodium cromoglycate-water systems. Mol Cryst Liq Cryst. 1982;80:129–134. doi: 10.1080/00268948208071026
  • Perahia D, Goldfarb D, Luz Z. Sodium-23 NMR in the lyomesophases of disodiumcromoglycate. Mol Cryst Liq Cryst. 1984;108:107–123. doi: 10.1080/00268948408072101
  • Hamada K, Take S, Iijima T, Amiya S. Effects of electrostatic repulsion on the aggregation of azo dyes in aqueous solution. J Chem Soc Faraday Trans. 1986;82:3141–3148. doi: 10.1039/f19868203141
  • Hamada K, Mitshuishi M, Ohira M, Miyazaki K. Positional effects of a trifluoromethyl group on the aggregation of azo dyes in aqueous solutions. J Chem Phys. 1993;97:4926–4929. doi: 10.1021/j100121a010
  • Perahia D, Luz Z, Wachtel EJ, Zimmermann H. NMR and X-ray diffraction of the 7,7'-disodiumcromoglycate-water lyomesophases. Liq Cryst. 1987;2:473–489. doi: 10.1080/02678298708086304
  • Edwards DJ, Jones JW, Lozman O, Ormerod AP, Sintyureva M, Tiddy GJT. Chromonic liquid crystal formation by edicol sunset yellow. J Phys Chem B. 2008;112:14628–14636. doi: 10.1021/jp802758m
  • Jones JW, Lue L, Ormerod AP, Tiddy GJT. The influence of sodium chloride on the self-association and chromonic mesophase formation of edicol sunset yellow. Liq Cryst. 2010;37:711–722. doi: 10.1080/02678292.2010.486174
  • Renshaw MP, Day IJ. NMR characterization of the aggregation state of the azo dye sunset yellow in the isotropic phase. J Phys Chem. 2010;114:10032–10038. doi: 10.1021/jp104356m
  • Xiao W, Hu C, Carter DJ, Nichols S, Ward MD, Raiteri P, Rohl AL, Kahr B. Structural correspondence of solution, liquid crystal, and crystalline phases of the chromonic mesogen sunset yellow. Cryst Growth Des. 2014;14:4166–4176. doi: 10.1021/cg500752x
  • Champion JV, Meeten GH. Conformation of soidum cromolyn in aqueous solution using light scattering and magnetic birefringence. J Pharm Sci. 1973;62:1589–1595. doi: 10.1002/jps.2600621003
  • Ostapenko T, Nastishin YA, Collings PJ, Sprunt SN, Lavrentovich OD, Gleeson JT. Aggregation, pretransitional behavior, and optical properties in the isotropic phase of lyotropic chromonic liquid crystals studied in high magnetic fields. Soft Matter. 2013;9:9487–9498. doi: 10.1039/c3sm51819a
  • Rehage H, Platz G, Struller B, Thunig C. Reheological properties of dye assemblies. Tenside Surf Det. 1996;33:242–248.
  • Pasternack RF, Fleming C, Herring S, Collings PJ, dePaula J, DeCastro G, Gibbs EJ. Aggregation kinetics of extended porphyrin and cyanine dye assemblies. Biophys J. 2000;79:550–560. doi: 10.1016/S0006-3495(00)76316-8
  • Lohr A, Lysetska M, Wurthner F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew Chem Int Ed. 2005;44:5071–5074. doi: 10.1002/anie.200500640
  • Jyothish K, Hariharan M, Ramaiah D. Chiral supramolecular assemblies of a squaraine dye in solution and this films: concentration-, temperature-, and solvent-induced chirality inversion. Chem Eur J. 2007;13:5944–5951. doi: 10.1002/chem.200700130
  • Gielen JC, Ver Heyen A, Klyatskaya S, Vanderlinden W, Höger S, Maan JC, De Feyter S, Christianen PCM. Aggregation kinetics of macrocycles detected by magnetic birefringence. J Am Chem Soc. 2009;131:14134–14135. doi: 10.1021/ja904816m
  • Hamilton EJ, Collings PJ. Unpublished raw data. 2015.
  • Nieser KJ, Collings PJ. Unpublished raw data. 2015.
  • Park H-S, Kang S-W, Tortora L, Kumar S, Lavrentovich OD. Condensation of self-assembled lyotropic chromonic liquid crystal sunset yellow in aqueous solutions crowded with polyethylene glycol and doped with salt. Langmuir. 2011;27:4164–4175. doi: 10.1021/la200505y
  • Simon KA, Sejwal P, Gerecht RB, Luk Y-Y. Water-in-water emulsions stabilized by non-amphiphilic interactions: polymer-dispersed lyotropic liquid crystals. Langmuir. 2007;23:1453–1458. doi: 10.1021/la062203s
  • Gooding JJ, Compton RG, Brennan CM, Atherton JH. A new electrochemical method for the investigation of the aggregation of dyes in solution. Electroanalysis. 1997;9:759–764. doi: 10.1002/elan.1140091006
  • Tortora L, Park H-S, Antion K, Finetello D, Lavrentovich OD. Lyotropic chromonic liquid crystals as materials for optical and biosensing applications. Proc SPIE. 2007;6487:6487O1-1–6487O1-15.
  • von Berlepsch H, Böttcher C, Dähne L. Structure of J-aggregates of pseudoisocyanine dye in aqueous solution. J Phys Chem B. 2000;104:8792–8799. doi: 10.1021/jp000085q
  • von Berlepsch H, Böttcher C. Network superstructure of pseudoisocyanine J-aggregates in aqueous sodium chloride solution revealed by cryo-transmission electron microscopy. J Phys Chem B. 2002;106:3146–3150. doi: 10.1021/jp0143701
  • Schneider T, Smith A, Lavrentovich OD. Imaging oriented aggregates of lyotropic chromonic mesogenic dyes by atomic force microscopy. Mat Res Soc Symp. 2001;636:D11.8.1–D11.8.5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.