2,793
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Liquid crystal lenses with tunable focal length

, &
Pages 111-143 | Received 10 Dec 2017, Accepted 09 Feb 2018, Published online: 01 Mar 2018

References

  • Land MF. The optical structures of animal eyes. Curr Biol. 2005;15(9):319–323.
  • Yoseph BC. Biomimetics: biologically inspired technologies. Boca Raton (FL): Taylor & Francis; 2005.
  • Walls GL. The vertebrate eye and its adaptive radiation. Bloomfield Hills (MI): Cranbrook Institute of Science; 1942.
  • Fowler CW, Pateras ES. Liquid crystal lens review. Ophthal Physl Opt. 1990;10(2):186–194.
  • Sato S. Applications of liquid crystals to variable-focusing lenses. Opt Rev. 1999;6(6):471–485.
  • Lin HC, Chen MS, Lin YH. A review of electrically tunable focusing liquid crystal lenses. Trans Electr Electron Mater. 2011;12(6):234–240.
  • Xu S, Li Y, Liu Y, et al. Fast-response liquid crystal microlens. Micromachines. 2014;5(2):300–324.
  • Li L, Bryant D, Bos PJ. Liquid crystal lens with concentric electrodes and inter-electrode resistors. Liq Cryst Rev. 2014;2(2):130–154.
  • Kim SU, Na JH, Kim C, et al. Design and fabrication of liquid crystal-based lenses. Liq Cryst. 2017;44(12–13):1–12.
  • Kuiper S, Hendriks BHW. Variable-focus liquid lens for miniature cameras. Appl Phys Lett. 2004;85(7):1128–1130.
  • Berge B. Liquid lens technology: principle of electrowetting based lenses and applications to imaging. Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems; 2005 Jan 30–Feb 3; Miami Beach, FL, USA; 2005. IEEE; p. 227–230.
  • Nguyen NT. Micro-optofluidic lenses: a review. Biomicrofluidics. 2010;4(3):031501.
  • Chiu CP, Chiang TJ, Chen JK, et al. Liquid lenses and driving mechanisms: a review. J Adhes Sci Technol. 2012;26:1033–1052.
  • Ren H, Wu ST. Introduction to adaptive lenses. New York: Wiley; 2012.
  • Pohl HA. Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. New York: Cambridge University Press; 1978.
  • Kuwano R, Tokunaga T, Otani Y, et al. Liquid pressure varifocus lens. Opt Rev. 2005;12(5):405–408.
  • Song W, Vasdekisa AE, Psaltisa D. Elastomer based tunable optofluidic devices. Lab Chip. 2012;12(9):3590–3597.
  • Beni G, Hackwood S. Electro-wetting displays. Appl Phys Lett. 1981;38:207–209.
  • Grinberg J, Jacobson A, Bleha W, et al. A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve. Opt Eng. 1975;14(3):143–217.
  • Konforti N, Marom E, Wu ST. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. Opt Lett. 1988;13(3):251–253.
  • Takaki Y, Ohzu H. Liquid-crystal active lens: a reconfigurable lens employing a phase modulator. Opt Commun. 1996;126(1–3):123–134.
  • Laude V. Twisted-nematic liquid-crystal pixelated active lens. Opt Commun. 1998;153(1–3):134–152.
  • Laude V, Dirson C. Liquid-crystal active lens: application to image resolution enhancement. Opt Commun. 1999;163(1–3):72–78.
  • Itoh H, Matsumoto N, Inoue T. Spherical aberration correction suitable for a wavefront controller. Opt Express. 2009;17(16):14367–14373.
  • Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011;5(1):81–101.
  • Salter PS, Baum M, Alexeev I, et al. Exploring the depth range for three-dimensional laser machining with aberration correction. Opt Express. 2014;22(15):17644–17656.
  • Efron U, editor. Spatial light modulator technology: materials, devices, and applications. New York: CRC Press; 1994.
  • Berreman DW, inventor; Bell Telephone Laboratories, Inc., assignee. Variable focus liquid crystal lens system. United States patent US 4,190,330. 1980 Feb 26.
  • Bricot C, Hareng M, Spitz E, inventor; Thomson-Brandt, assignee. Optical projection device and an optical reader incorporating this device. United States patent US 4,037,929. 1977 Jul 26.
  • Sato S. Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys. 1979;18(9):1679–1684.
  • Ye M, Wang B, Takahashi T, et al. Properties of variable-focus liquid crystal lens and its application in focusing system. Opt Rev. 2007;14(4):173–175.
  • Lin YH, Chen HS, Chen MS, et al. Liquid crystals for ophthalmic lenses and biosensing applications. SID Symp Dig Tech Pap. 2014;45(1):563–566.
  • Wang YJ, Chen PJ, Liang X, et al. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices. Sci Rep. 2017;7(433):1–12.
  • Hecht E. Optics. 4th ed. Boston: Pearson Addison Wesley; 1974.
  • Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3(1198):1–6.
  • Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun. 2012;3(1205):1–9.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–150.
  • Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements. Science. 2014;345(6194):298–302.
  • Aieta F, Kats MA, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science. 2015;347(6228):1342–1345.
  • Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 2015;15(8):5358–5362.
  • Orazbayev B, Beruete M, Pacheco-Peña V, et al. Soret fishnet metalens antenna. Sci Rep. 2015;5(9988):1–6.
  • Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nat Photonics. 2016;10:389–392.
  • Li Q, Dong F, Wang B, et al. Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt Express. 2016;24(15):16309–16319.
  • Byrnes SJ, Lenef A, Aieta F, et al. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express. 2016;24(5):5110–5124.
  • Khorasaninejad M, Chen WT, Devlin RC, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–1194.
  • Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv. 2016;2(1):e1501168.
  • Einstein A. Lens-like action of a star by the deviation of light in the gravitational field. Science. 1936;84(2188):506–507.
  • Narayan R, Bartelmann M. Lectures on gravitational lensing. Cambridge: Cambridge University Press; 1996.
  • Goodman JW. Introduction to Fourier optics. 3rd ed. Englewood (CO): Roberts; 2005.
  • Commander LG, Day SE, Selviah DR. Vairable focal length microlenses. Opt Commun. 2000;177:157–170.
  • Tanaka M, Sato S. Focusing properties of liquid crystal lens cells with stack-layered structure in the millimeter-wave region. IEEE Microw Wirel Co. 2002;12(5):163–165.
  • Tanaka M, Sato S. Electrically controlled millimeter-wave focusing properties of liquid crystal lens. Jpn J Appl Phys. 2002;41(8):5332–5333.
  • Kim J, Kim J, Na JH, et al. Liquid crystal-based square lens array with tunable focal length. Opt Express. 2014;2(3):3316–3324.
  • Milton HE, Morgan PB, Clamp JH, et al. Electronic liquid crystal contact lenses for the correction of presbyopia. Opt Express. 2014;22(7):8035–8040.
  • Syed IM, Kaur S, Milton HE, et al. Novel switching mode in a vertically aligned liquid crystal contact lens. Opt Express. 2015;23(8):9911–9916.
  • Sarabjot K, Kim YJ, Milton H, et al. Graphene electrodes for adaptive liquid crystal contact lenses. Opt Express. 2016;24(8):8782–8787.
  • Kim JH, Kim YH, Jeong HS. Thermally responsive microlens arrays fabricated with the use of defect arrays in a smectic liquid crystal. RSC Adv. 2012;2:6729–6732.
  • Heo KC, Yu SH, Kwon JH, et al. Thermally tunable-focus lenticular lens using liquid crystal. Appl Opt. 2013;52(35):8460–8464.
  • Lee YJ, Yu CJ, Lee JH, et al. Optically isotropic switchable microlens arrays based on liquid crystal. Appl Opt. 2014;53(17):3633–3636.
  • Riza NA, DeJule MC. Three-terminal adaptive nematic liquid-crystal lens device. Opt Lett. 1994;19(14):1013–1015.
  • Hongwen R, Fan YH, Gauza S, et al. Tunable-focus cylindrical liquid crystal lens. Jpn J Appl Phys. 2004;43(2):652–653.
  • Moraes F, Satiro C. Lensing effects in a nematic liquid crystal with topological defects. Eur Phys J E. 2006;20:173–178.
  • Wang B, Ye M, Honma M, et al. Liquid crystal lens with spherical electrode. Jpn J Appl Phys. 2002;41(11A):L1232–L1233.
  • Ren H, Fan YH, Gauza S, et al. Tunable-focus flat liquid crystal spherical lens. Appl Phys Lett. 2004;84(23):4789–4791.
  • Wang B, Ye M, Sato S. Experimental and numerical studies on liquid crystal lens with spherical electrode. Mol Cryst Liq Cryst. 2005;433(1):217–227.
  • Fan YH, Ren H, Liang X, et al. Liquid crystal microlens arrays with switchable positive and negative focal lengths. J Disp Technol. 2005;1(1):151–156.
  • Ren H, Wu ST. Adaptive liquid crystal lens with large focal length tenability. Opt Express. 2006;14(23):11292–11298.
  • Ren H, Lin YH, Wu ST. Adaptive lens using liquid crystal concentration redistribution. Appl Phys Lett. 2006;88:191116.
  • Ren H, Fox WD, Wu B, et al. Liquid crystal lens with large focal length tunability and low operating voltage. Opt Express. 2007;15(18):11328–11335.
  • Choi W, Kim DW, Lee SD. Liquid crystal lens array with high fill-factor fabricated by an imprinting technique. Mol Cryst Liq Cryst. 2009;508(1):35–40.
  • Liang D, Wang QH. Liquid crystal microlens array using double lenticular electrodes. J Disp Technol. 2013;9(10):814–818.
  • Wang B, Ye M, Sato S. Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers. Appl Opt. 2004;43(17):3420–3425.
  • Asatryan K, Presnyakov V, Tork A, et al. Optical lens with electrically variable focus using an optically hidden dielectric structure. Opt Express. 2010;18(13):13981–13992.
  • Sova O, Reshetnyak VY, Galstian T, et al. Electrically variable liquid crystal lens based on the dielectric dividing principle. J Opt Soc Am A. 2015;32(5):803–808.
  • Sova O, Reshetnyak VY, Galstian T. Theoretical analyses of a liquid crystal adaptive lens with optically hidden dielectric double layer. J Opt Soc Am A. 2017;34(3):424–431.
  • Sova O, Reshetnyak VY, Galstian T. Modulation transfer function of liquid crystal microlenses and microprisms using double dielectric layer. Appl Opt. 2018;51(1):18–24.
  • Lin HC, Lin YH. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Opt Express. 2012;20(3):2045–2052.
  • Nose T, Masuda S, Sato S. Optical properties of a hybrid-aligned liquid crystal microlens. Mol Cryst Liq Cryst. 1991;199(1):27–35.
  • Nose T, Masuda S, Sato S. Optical properties of a liquid crystal microlens with a symmetric electrode structure. Jpn J Appl Phys. 1991;30(12B):L2110–L2112.
  • Nose T, Masuda S, Sato S. A liquid crystal microlens with hole-patterned electrodes on both substrates. Jpn J Appl Phys. 1992;31(5B):1643–1646.
  • Masuda S, Fujioka S, Honma M, et al. Dependence of optical properties on the device and material parameters in liquid crystal microlenses. Jpn J Appl Phys. 1996;35(9A):4668–4672.
  • Masuda S, Takahashi S, Nose T, et al. Liquid-crystal microlens with a beam-steering function. Appl Opt. 1997;36(20):4772–4778.
  • Ye M, Sato S. Optical properties of liquid crystal lens of any size. Jpn J Appl Phys. 2002;41(5B):571–573.
  • Ye M, Hayasaka S, Sato S. Liquid crystal lens array with hexagonal-hole-patterned electrodes. Jpn J Appl Phys. 2004;43(9A):6108–6111.
  • Wang B, Ye M, Sato S. Liquid crystal lens with stacked structure of liquid-crystal layers. Opt Commun. 2005;250:266–273.
  • Wang B, Ye M, Sato S. Properties of liquid crystal lens with stacked structure of liquid crystal layers. Jpn J Appl Phys. 2006;45(10A):7813–7818.
  • Wang B, Ye M, Sato S. Liquid crystal negative lens. Jpn J Appl Phys. 2005;44(7A):4979–4983.
  • Wang B, Ye M, Sato S. Liquid crystal lens with focal length variable from negative to positive values. IEEE Photonics Technol Lett. 2006;18(1):79–81.
  • Ye M, Yokoyama Y, Sato S. Liquid crystal anamorphic lens. Jpn J Appl Phys. 2005;44(1A):235–236.
  • Pishnyak O, Sato S, Lavrentovich OD. Electrically tunable lens based on a dual-frequency nematic liquid crystal. Appl Opt. 2006;45(19):4576–4582.
  • Knittel J, Richter H, Hain M, et al. A temperature controlled liquid crystal lens for spherical aberration compensation. Microsyst Technol. 2007;13(2):161–164.
  • Chiu CW, Lin YC, Chao Paul CP, et al. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes. Opt Express. 2008;16(23):19277–19284.
  • Huang CY, Huang YJ, Tseng YH. Dual-operation-mode liquid crystal lens. Opt Express. 2009;17(23):20860–20865.
  • Huang CY, Lai CC, Tseng YH, et al. Silica-nanoparticle-doped nematic display with multistable and dynamic modes. Appl Phys Lett. 2008;92:221908.
  • Lin HC, Lin YH. A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens. Appl Phys Lett. 2010;97(6):063505.
  • Kawamura M, Goto H, Yumoto E. Improvement of negative lens property of liquid crystal device. Jpn J Appl Phys. 2010;49(11R):118002.
  • Kao YY, Chao Paul CP, Hsueh CW. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Opt Express. 2010;18(18):18506–18518.
  • Kawamura M ITOY. Liquid crystal lens with double circularly hole-patterned electrodes. Mol Cryst Liq Cryst. 2011;542:176–181.
  • Lin HC, Lin YH. An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens. Appl Phys Lett. 2011;98(8):083503.
  • Chao PCP, Kao YY, Hsu CJ. A new negative liquid crystal lens with multiple ring electrodes in unequal widths. IEEE Photonic J. 2012;4(1):250–266.
  • Hsu CJ, Sheu CR. Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocal. Opt Express. 2012;20(4):4738–4746.
  • Li LW, Bryant D, Heugten TV, et al. Near-diffraction-limited tunable liquid crystal lens with simplified design. Opt Eng. 2013;52(3):035007.
  • Li LW, Bryant D, Heugten TV, et al. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes. Opt Express. 2013;21(7):8371–8381.
  • Hsu CJ, Jhang JJ, Huang CY. Large aperture liquid crystal lens with an imbedded floating ring electrode. Opt Express. 2016;24(15):16722–16731.
  • Beeckman J, Yang TH, Nys I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step. Opt Lett. 2018;43(2):271–274.
  • Naumov AF, Loktev MY, Guralnik IR, et al. Liquid-crystal adaptive lenses with modal control. Opt Lett. 1998;23(13):992–994.
  • Naumov AF, Love GD, Loktev MY, et al. Control optimization of spherical modal liquid crystal lenses. Opt Express. 1999;4:344–352.
  • Love GD, Naumov AF. Modal liquid crystal lenses. Liq Cryst Today. 2000;10(1):1–4.
  • Hands PJW, Kirby AK, Love GD. Adaptive modally addressed liquid crystal lenses. Proc SPIE. 2004;5518:136–143.
  • Ye M, Wang B, Sato S. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material. Opt Express. 2008;16(6):4302–4308.
  • Ye M, Wang B, Yamaguchi M, et al. Reducing driving voltages for liquid crystal lens using weakly conductive thin film. Jpn J Appl Phys. 2008;46(6):4597–4599.
  • Wang B, Ye M, Yamaguchi M, et al. Thin liquid crystal lens with low driving voltages. Jpn J Appl Phys. 2009;48(9R):098004.
  • Ye M, Wang B, Uchida M, et al. Low-voltage-driving liquid crystal lens. Jpn J Appl Phys. 2010;49(10R):100–204.
  • Fraval N, de la Tocnaye JL. Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths. Appl Opt. 2010;49(15):2778–2783.
  • Ye M, Wang B, Uchida M, et al. Focus tuning by liquid crystal lens in imaging system. Appl Opt. 2012;51(31):7630–7635.
  • Chen CW, Cho MJ, Huang YP, et al. Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens. Opt Lett. 2012;37(19):4125–4127.
  • Hassanfiroozi A, Huang YP, Javidi B, et al. Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system. Opt Express. 2016;24(8):8527–8538.
  • Galstian T, Asatryan K, Presniakov VP, et al. High optical quality electrically variable liquid crystal lens using an additional floating electrode. Opt Lett. 2016;41(14):3265–3268.
  • Cheng CC, Chang C A, Liu CH, et al. A tunable liquid-crystal microlens with hybrid alignment. J Opt A-Pure Appl Op. 2006;8(7):S365–S369.
  • Ye M, Yokoyama Y, Sato S. Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls. Appl Phys Lett. 2006;89(14):141112.
  • Honma M, Nose T, Yanase S, et al. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles. Opt Express. 2009;17(13):10998–11006.
  • Tseng MC, Fan F, Lee CY, et al. Tunable lens by spatially varying liquid crystal pretilt angles. J Appl Phys. 2011;109(8):083109.
  • Fan F, Srivastava AK, Du T, et al. Low voltage tunable liquid crystal lens. Opt Lett. 2013;38(20):4116–4119.
  • Bezruchenko VS, Muravsky AA, Murauski AA, et al. Tunable liquid crystal lens based on pretilt angle gradient alignment. Mol Cryst Liq Cryst. 2016;626:222–228.
  • Presnyakov VV, Asatryan KE, Galstian T, et al. Polymer-stabilized liquid crystal for tunable microlens applications. Opt Express. 2002;10(17):865–870.
  • Ren H, Wu ST. Tunable electronic lens using a gradient polymer network liquid crystal. Appl Phys Lett. 2003;82(1):22–24.
  • Ren H, Fan YH, Gauza S, et al. Tunable microlens arrays using polymer network liquid crystal. Opt Commun. 2004;230:267–271.
  • Presnyakov VV, Galstian T. Electrically tunable polymer stabilized liquid-crystal lens. J Appl Phys. 2005;97:130101.
  • Ren H, Wu ST. Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index. Appl Phys Lett. 2002;81(19):3537–3539.
  • Gui K, Zheng JH, Wang KN, et al. Eelectrically controlled fast response cascading tunable polymer dispersed liquid crystal focusing lenses. Microw Opt Technol Let. 2013;55(12):2830–2835.
  • Yu JH, Chen HS, Chen PJ. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix. Opt Express. 2015;23(13):17337–17344.
  • Ye M, Sato S. Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations. Jpn J Appl Phys. 2003;42(10):6439–6440.
  • Ye M, Sato S. Liquid crystal lens of two liquid crystal layers. Mol Cryst Liq Cryst. 2004;422(1):197–207.
  • Ye M, Wang B, Sato S. Double-layer liquid crystal lens. Jpn J Appl Phys. 2004;43(3A):L352–L354.
  • Ye M, Wang B, Sato S. Polarization-independent liquid crystal lens with four LC layers. IEEE Photonics Technol Lett. 2006;18(3):505–507.
  • Ye M, Wang B, Kawamura M, et al. Image formation using liquid crystal lens. Jpn J Appl Phys. 2007;46(10A):6776–6777.
  • Fuh AYG, Ko SW, Huang SH, et al. Polarization-independent liquid crystal lens based on axially symmetric photoalignment. Opt Express. 2011;19(3):2294–2300.
  • Lin YH, Chen HS. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt Express. 2013;21(8):9428–9436.
  • Chen HS, Chen MS, Lin YH. Electrically tunable ophthalmic lenses for myopia and presbyopia using liquid crystals. Mol Cryst Liq Cryst. 2014;596(1):88–96.
  • Chen HS, Wang YJ, Chang CM, et al. A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure. IEEE Photonics Technol Lett. 2015;27(8):899–902.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96(11):113505.
  • Li Y, Wu ST. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt Express. 2011;19(9), 8045–8050.
  • Lin YH, Tsou YS. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals. Jpn J Appl Phys. 2011;110:114516.
  • Bao R, Cui C, Yu S, et al. Polarizer-free imaging of liquid crystal lens. Opt Express. 2014;22(16):19824–19830.
  • Cui C, Bao R, Yu S, et al. Polarizer-free imaging using reference image for liquid crystal lens. Opt Commun. 2015;342:214–217.
  • Arakawa Y, Nakajima S, Kang S, et al. Design of an extremely high birefringence nematic liquid crystal based on a dinaphthyl-diacetylene mesogen. J Mater Chem. 2012;22:13908–13910.
  • De Gennes PG, Prost J. The physics of liquid crystals. New York: Oxford; 1995.
  • Hwang YS, Yoon TH, Kim JC. Design and fabrication of variable focusing lens array using liquid crystal for integral photography. Jpn J Appl Phys. 2003;42(10):6434–6438.
  • Ren H, Fan YH, Wu ST. Liquid-crystal microlens arrays using patterned polymer networks. Opt Lett. 2004;29(14):1608–1610.
  • Liu YJ, Sun XW, Wang Q. A focus-switchable lens made of polymer-liquid crystal composite. J Cryst Growth. 2006;288(1):192–194.
  • Hamdi R, Petriashvili G, Lombardo G, et al. Liquid crystal bubbles forming a tunable micro-lenses array. J Appl Phys. 2011;110(7):074902.
  • Lin CH, Chen CH, Chiang RH, et al. Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode. IEEE Photonics Technol Lett. 2011;23(24):1875–1877.
  • Ren H, Fan YH, Lin YH, et al. Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets. Opt Commun. 2005;247:101–106.
  • Liu YF, Li Y, Wu ST. Polarization-independent adaptive lens with two different blue-phase liquid-crystal layers. Appl Opt. 2013;52(14):3216–3220.
  • Lin SH, Huang LS, Lin CH, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals. Opt Express. 2014;22(1):925–930.
  • Lin SH, Huang LS, Kuo CT. Polarization-Independent and fast response microlens arrays based on blue phase liquid crystals. Mol Cryst Liq Cryst. 2014;595:118–122.
  • Davis A, Kühnlenz F. Optical design using Fresnel lenses. Optik & Photonik. 2007;2(4):52–55.
  • Smith WJ. Modern optical engineering. 4th ed. New York: McGraw Hill; 2008.
  • Sato S, Sugiyama A, Sato R. Variable-focus liquid-crystal Fresnel lens. Jpn J Appl Phys. 1985;24(8):L626–L628.
  • Sato S, Nose T, Yamaguchi R. Relationship between lens properties and director orientation in a liquid crystal lens. Liq Cryst. 1989;5(5):1435–1442.
  • Suyama S, Date M, Takada H. Three-dimensional display system with dual-frequency liquid-crystal varifocal lens. Jpn J Appl Phys. 2000;39(2A):480–484.
  • Williams G, Powell NJ, Purvis A. Electrically controllable liquid crystal Fresnel lens. Proc SPIE. 1989;1168:352–358.
  • Patel JS, Rastani K. Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays. Opt Lett. 1991;16(7):532–534.
  • Fan YH, Ren H, Wu ST. Switchable Fresnel lens using polymer-stabilized liquid crystals. Opt Express. 2003;11(23):3080–3086.
  • Lin TH, Huang Y, Fuh AYG, et al. Polarization controllable Fresnel lens using dye-doped liquid crystals. Opt Express. 2006;14(6):2359–2364.
  • Lin LC, Jau HC, Lin TH, et al. Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal. Opt Express. 2007;15(6):2900–2906.
  • Hung WC, Chen YJ, Lin CH, et al. Sensitive voltage-dependent diffraction of a liquid crystal Fresnel lens. Appl Opt. 2009;48(11):2094–2098.
  • Nemati H, Mohajerani E, Moheghi A, et al. A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens. Europhys Lett. 2009;87(6):64001.
  • Jeng SC, Hwang SJ, Horng JS, et al. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film. Opt Express. 2010;18(25):26325–26331.
  • Lin CH, Huang HY, Wang JY. Polarization-Independent liquid-crystal Fresnel lenses based on surface-mode switching of 90° twisted-nematic liquid crystals. IEEE Photonics Technol Lett. 2010;22(3):137–139.
  • Jashnsaz H, Mohajerani E, Nemati H, et al. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer. Appl Optics. 2011;50(17):2701–2707.
  • Yeh HC, Kuo YC, Lin SH, et al. Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer. Opt Lett. 2011;36(8):1311–1313.
  • Kuo YC, Yeh HC. Optically controllable transflective Fresnel lens in azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer. Appl Phys Express. 2012;5(2):021701.
  • Huang YH, Ko SW, Chu SC, et al. High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method. Appl Optics. 2012;51(32):7739–7744.
  • Hwang SJ, Chen TA, Lin KR, et al. Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses. Appl Phys. 2012;107(1):151–155.
  • Wei XP, Zheng JH, Wang YN, et al. Multi-imaging characteristics of electrically controlled on-axis holographic polymer-dispersed liquid crystal Fresnel lens. Opt Eng. 2015;54(3):037110.
  • Srivastava AK, Wang XQ, Gong SQ, et al. Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens. Opt Lett. 2015;40(8):1643–1646.
  • Lin SH, Li CY, Kuo CT, et al. Fresnel lenses in 90° twisted-nematic liquid crystals With optical and electrical controllability. IEEE Photonics Technol Lett. 2016;28(13):1462–1464.
  • Lin SH, Huang BY, Li CY, et al. Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer. Opt Mater Express. 2016;6(7):2229–2235.
  • Huang SJ, Li Y, Zhou PC, et al. Polymer network liquid crystal grating/Fresnel lens fabricated by holography. Liq Cryst. 2017;44(5):873–879.
  • Wang XQ, Yang WQ, Liu Z, et al. Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal. Opt Mater Express. 2017;7(1):8–15.
  • Ren H, Fan YH, Wu ST. Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals. Appl Phys Lett. 2003;83(8):1515–1517.
  • Jashnsaz H, Nataj NH, Mohajerani E, et al. All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals. Appl Opt. 2011;50(22):4295–4301.
  • Lin CH, Wang YY, Hsieh CW. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals. Opt Lett. 2011;36(4):502–504.
  • Tan J, Song Y, Zhu JL, et al. Blue phase LC/polymer Fresnel lens fabricated by holographics. J Disp Technol. 2014;10(2):157–161.
  • Rong N, Li Y, Li X, et al. Polymer-stabilized blue-phase liquid crystal Fresnel lens cured with patterned light using a spatial light modulator. J Disp Technol. 2016;12(10):1008–1012.
  • Kress B, Meyrueis P. Digital diffractive optics: an introduction to planar diffractive optics and related technology. New York: Wiley; 2000.
  • Lesem LB, Hirsch PM, Jordan JA. The Kinoform: a new wavefront reconstruction device. IBM J Res Dev. 1969;13(2):150–155.
  • Jordan JA, Hirsch PM, Lesem LB, et al. Kinoform lenses. Appl Opt. 1970;9(8):1883–1887.
  • Sales TRM, Morris GM. Diffractive–refractive behavior of kinoform lenses. Appl Opt. 1997;36(1):253–257.
  • Fan YH, Ren H, Wu ST. Electrically switchable Fresnel lens using a polymer-separated composite film. Opt Express. 2005;13(11):4141–4147.
  • Lee CR, Lo KC, Mo TS. Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern. Jpn J Appl Phys. 2007;46(7A):4144–4147.
  • Lou YM, Liu QK, Wang H, et al. Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens. Appl Optics. 2010;49(26):4995–5000.
  • Lou YM, Chen LS, Wang CH, et al. Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction. Appl Phys Lett. 2012;101(22):221121.
  • Lou YM, Shen S, Wang CH, et al. Design and fabrication of tunable liquid crystal diffractive lens. Opt Eng. 2013;52(9):091713.
  • Li GQ, Valley P, Giridhar MS, et al. Large-aperture switchable thin diffractive lens with interleaved electrode patterns. Appl Phys Lett. 2006;89(14):141120.
  • Li GQ, Mathine LD, Valley P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proc Natl Acad Sci USA. 2006;103(16):6100–6104.
  • Li GQ, Valley P, Äyräs P, et al. High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures. Appl Phys Lett. 2007;90(11):111105.
  • Valley P, Mathine LD, Dodge MR, et al. Tunable-focus flat liquid-crystal diffractive lens. Opt Lett. 2010;35(3):336–338.
  • Valley P, Savidis N, Schwiegerling J, et al. Adjustable hybrid diffractive/refractive achromatic lens. Opt Express. 2011;19(8):7468–7479.
  • Lee YM, Gwag JS, Choi Y, et al. Fast switching characteristics of a microlens array using the electroclinic effect of SmA* liquid crystals. Appl Optics. 2009;48(19):3737–3741.
  • Love GD, Hoffman DM, Hands PJW, et al. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt Express. 2009;17(18):15716–15725.
  • Mun BJ, Beak JH, Lee JH, et al. Low cell Gap polymeric liquid crystal lens for 2-D/3-D switchable auto-stereoscopic display. IEEE Trans Electron Devices. 2013;60(10):3430–3434.
  • Chen HS, Lin YH, Srivastava AK, et al. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element. Opt Express. 2014;22(11):13138–13145.
  • Huang SY, Tung TC, Jau HC, et al. All-optical controlling of the focal intensity of a liquid crystal polymer microlens array. Appl Opt. 2011;50(30):5883–5888.
  • Huang SY, Tung TC, Ting CL, et al. Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array. Appl Phys B. 2011;104(1):93–97.
  • Ren H, Xu S, Liu YF, et al. Switchable focus using a polymeric lenticular microlens array and a polarization rotator. Opt Express. 2013;21(7):7916–7925.
  • Zhu R, Xu S, Hong Q, et al. Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk. Appl Opt. 2014;53(7):1388–1395.
  • Heo KC, Kwon JH, Gwag JS. Liquid crystal lens array with thermally controllable focal length and electrically convertible lens type. J Opt Soc Korea. 2015;19(1):88–94.
  • Chen HS, Lin YH, Chang CM, et al. A polarized bifocal switch based on liquid crystals operated electrically and optically. J Appl Phys. 2015;117:044502.
  • Shen X, Wang YJ, Chen HS, et al. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens. Opt Lett. 2015;40(4):538–541.
  • Tabiryan NV, Serak SV, Roberts DE, et al. Thin waveplate lenses of switchable focal length – new generation in optics. Opt Express. 2015;23(20):25783–25794.
  • Tabiryan NV, Serak SV, Roberts DE, et al. Thin waveplate lenses – new generation in optics. Proc SPIE. 2015;9565:956512.
  • Gao K, Cheng HH, Bhowmik AK, et al. Thin-film Pancharatnam lens with low f-number and high quality. Opt Express. 2015;23(20):26086–26094.
  • Kim J, Li Y, Miskiewicz MN, et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica. 2015;2(11):958–964.
  • Tabiryan NV, Serak SV, Nersisyan SR, et al. Broadband waveplate lenses. Opt Express. 2016;24(7):7091–7102.
  • Honma M, Nose T. Liquid-crystal Fresnel zone plate fabricated by microrubbing. Jpn J Appl Phys. 2005;44(1A):287–290.
  • Tam AMW, Fan F, Chen HS, et al. “Continuous” nanoscale patterned photoalignment for thin film Pancharatnam-berry phase diffractive lens. SID Symp Dig Tech Pap. 2015;46:8–8.
  • Serak SV, Roberts DE, Hwang JY, et al. Diffractive waveplate arrays [invited]. J Opt Soc Am B. 2017;34:B56–B63.
  • Yariv A, Yeh P. Optical waves in crystals: propagation and control of laser radiation. New York: Wiley; 1984.
  • Pancharatnam S. Generalized theory of interference and its applications. Proc Indian Acad Sci. 1956;44(5):247–262.
  • Berry MV. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Optics. 1987;34:1401–1407.
  • Shapere A, Wilczek F, editors. Geometric phase in physics. Singapore: World Scientific; 1989.
  • Escuti MJ, Kim J, Kudenov MW. Controlling light with geometric-phase holograms. Opt Photonics News. 2016;27(2):22–29.
  • Ke Y, Liu Y, Zhou J, et al. Optical integration of Pancharatnam-berry phase lens and dynamical phase lens. Appl Phys Lett. 2016;108:101102.
  • Zhou J, Qian H, Hu G, et al. Broadband photonic spin hall meta-lens. ACS Nano. 2018;12(1):82–88.
  • Forouzmand A, Tao S, Jafar-Zanjani S, et al. Double split-loop resonators as building blocks of metasurfaces for light manipulation: bending, focusing, and flat-top generation. J Opt Soc Am B. 2016;33(7):1411–1420.
  • Daniel S, Saastamoinen K, Saastamoinen T, et al. Surface plasmons carry the Pancharatnam-berry geometric phase. Phys Rev Lett. 2017;119:253901.
  • Ren H, Lin YH, Fan YH, et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal. Appl Phys Lett. 2005;86:141110.
  • Lin YH, Ren H, Fan YH, et al. Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture. Jpn J Appl Phys. 2005;98:043112.
  • Ren H, Lin YH, Wen CH, et al. Polarization-independent phase modulation of a homeotropic liquid crystal gel. Appl Phys Lett. 2005;87:191106.
  • Lin YH, Ren H, Wu YH, et al. Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure. Opt Express. 2005;13(22):8746–8752.
  • Ren H, Lin YH, Wu ST. Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels. Appl Phys Lett. 2006;88:061123.
  • Huang YH, Wen CH, Wu ST. Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal. Appl Phys Lett. 2006;89:21–103.
  • Lin YH, Chen MS, Lin WC, et al. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell. Jpn J Appl Phys. 2012;112:024505.
  • Lin YH, Ren H, Wu ST. Polarisation-independent liquid crystal devices. Liq Cryst Today. 2008;17:2–8.
  • Hyman RM, Lorenz A, Morris SM, et al. Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device. Appl Opt. 2014;53(29):6925–6929.
  • Yan J, Xing YF, Guo ZB, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system. Opt Express. 2015;23(12):15256–15264.
  • Oton E, Netter E, Nakano T, et al. Monodomain blue phase liquid crystal layers for phase modulation. Sci Rep. 2017;7:44575.
  • Chang CM, Lin YH, Reshetnyak V, et al. Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals. Opt Express. 2017;25(17):19807–19821.
  • Ren H, Wu ST. Polarization independent beam fanning using a multi-domain liquid crystal cell. Opt Express. 2009;17:11530–11536.
  • Kravtsov YA, Orlov YI. Geometrical optics of inhomogeneous media. Berlin: Springer-Verlag; 1990.
  • Kubytskyi VO, Reshetnyak VY, Sluckin TJ, et al. Theory of surface potential-mediated photorefractivelike effects in liquid crystals. Phys Rev E. 2009;79:011703.
  • Goodman DS. Geometric optics. In: Bass M, editor. Handbook of optics. New York: McGraw-Hill; 1995. Ch. 1, I.22.
  • Fuki AA, Kravtsov YA, Naida ON. Geometrical optics of weakly anisotropic media. LH Amsterdam: CRC Press; 1998.
  • Meyer RB. Piezoelectric effects in liquid crystals. Phys Rev Lett. 1969;22(18), 918–921.
  • Agnes B, Nandor E, editors. Flexoelectricity in liquid crystals: theory, experiments and applications. London: Imperial College Press; 2012.
  • Rapini A, Papoular M. Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois. J Phys Colloq. 1969;30(C4):54–56.
  • Gelfand IM, Fomin SV. Calculus of variations. Revised English ed. Englewood Cliffs (NJ): Prentice-Hall; 1963.
  • Makarets M, Reshetnyak VY. Ordinary differential equations and calculus of variations. Singapore: World Scientific; 1995; p. 372.
  • Stewart IW. The static and dynamic continuum theory of liquid crystals: a mathematical introduction. London: CRC Press; 2004; p. 351.
  • Ji HS, Kim JH, Kumar S. Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials. Opt Lett. 2003;28(13):1147–1149.
  • Subota SL, Reshetnyak VY, Pavliuchenko SP, et al. Numerical modeling of tunable liquid-crystal-polymer-network lens. Mol Cryst Liq Cryst. 2008;489(1):40–53.
  • Subota SL, Reshetnyak VY, Ren H, et al. Tunable-focus liquid crystal lens with Non-planar electrodes. Mol Cryst Liq Cryst. 2010;526(1):93–100.
  • Reshetnyak VY, Subota SL, Galstian T. Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens. Mol Cryst Liq Cryst. 2006;454(1):187–200.
  • Lucchetti L, Kushnir K, Reshetnyak VY, et al. Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation. Opt Mat. 2017;73:64–69.
  • Li C, Xia M, Jiang B, et al. Retina imaging system with adaptive optics for the eye with or without myopia. Opt Commun. 2009;282(7):1496–1500.
  • Wang YJ, Lin YH. Liquid crystal lenses in augmented reality. Proceeding of SID Display Week; 2017 May 21–26; Los Angeles, CA, USA: SID Symp Dig Tech Pap. 2017;48(1):230–233.
  • Stankovic S, Dias D, Hain M, et al. Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup. Appl Opt. 2001;40(5):614–621.
  • Amberg M, Oeder A, Sinzinger S, et al. Tunable plannar integrated optical systems. Opt Express. 2007;15(17):10607–10614.
  • Lin HC, Lin YH. An electrically tunable focusing pico-projector adopting a liquid crystal lens. Jpn J Appl Phys. 2010;49(102502):1–5.
  • Lin HC, Chen MS, Lin YH. An electrically tunable focusing pico projection system based on a liquid crystal lens adopting a liquid crystal and polymer composite film. J Nonlinear Optic Phys Mat. 2011;20(4):477–484.
  • Lin HC, Chen MS, Lin YH. An electrically tunable focusing pico projector using a liquid crystal lens as an active optical element. Mol Cryst Liq Cryst. 2011;42(1):1804–1807.
  • Li H, Zhu C, Liu K, et al. Terahertz electrically controlled nematic liquid crystal lens. Infrared Phys Technol. 2011;54(5):439–444.
  • Shibuya G, Okuzawa N, Hayashi M. New application of liquid crystal lens of active polarized filter for micro camera. Opt Express. 2012;20(25):27520–27528.
  • Chen HS, Lin YH. An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field. Opt Express. 2013;21(15):18079–18088.
  • Kim J, Han JI. Effect of liquid crystal concentration on electro-optical properties of polymer dispersed. Electron Mater Lett. 2014;10(3):607–610.
  • Chen HS, Wang YJ, Chen PJ, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens. Opt Express. 2015;23(22):28154–28162.
  • Ye M, Noguchi M, Wang B, et al. Zoom lens system without moving elements realised using liquid crystal lenses. Electron Lett. 2009;45(12):646–648.
  • Valley P, Reza Dodge M, Schwiegerling J, et al. Nonmechanical bifocal zoom telescope. Opt Lett. 2010;35(15):2582–2584.
  • Lin YH, Chen MS, Lin HC. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio. Opt Express. 2011;19(5):4714–4721.
  • Lin HC, Collings N, Chen MS, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom. Opt Express. 2012;20(25):27222–27229.
  • Lin YH, Chen MS. A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses. J Disp Technol. 2012;8(7):401–404.
  • Tremblay EJ, Stamenov I, Beer RD, et al. Switchable telescopic contact lens. Opt Express. 2013;21(13):15980–15986.
  • Chen MS, Collings N, Lin HC, et al. A holographic projection system with an electrically adjustable optical zoom and a fixed location of Zeroth-order diffraction. J Disp Technol. 2014;10(6):450–455.
  • Gao K, Cheng HH, Bhowmik A, et al. Nonmechanical zoom lens based on the Pancharatnam phase effect. Appl Opt. 2016;55(5):1145–1150.
  • Park CK, Lee SS, Hwang YS. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths. Opt Express. 2009;17(21):19047–19054.
  • Xu K, Hwang YS, Lee SS. Integral imaging system featuring a seamlessly extended depth of field. Microw Opt Technol Lett. 2012;54(7):1705–1711.
  • Wang YJ, Shen X, Lin YH, et al. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens. Opt Lett. 2015;40(15):3564–3567.
  • Yang L, Raighne AM, McCabe EM, et al. Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle. Appl Opt. 2005;44(28):5928–5936.
  • Liu YF, Ren H, Xu S, et al. Adaptive focus integral image system design based on fast-response liquid crystal microlens. J Disp Technol. 2011;7(12):674–678.
  • Kawamura M, Toshima K. Shape measurements by using a liquid crystal lens. Mol Cryst Liq Cryst. 2011;542(1):190–195.
  • Kawamura M, Yumoto E, Ishikuro S. 3-D microscope system by using a liquid crystal lens. Int J Optomechatroni. 2013;7(3):149–159.
  • Li H, Pan F, Wu Y, et al. Three-dimensional imaging based on electronically adaptive liquid crystal lens. Appl Optics. 2014;53(33):7916–7923.
  • Kawamura M, Ishikuro S. Feature extraction from multiply focal images by using a liquid crystal lens. Mol Cryst Liq Cryst. 2015;613(1):51–58.
  • Hassanfiroozi A, Huang YP, Javidi B, et al. Hexagonal liquid crystal lens array for 3D endoscopy. Opt Express. 2015;23(2):971–981.
  • Hui L, Fan P, Yuntao W, et al. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal. Appl Opt. 2016;55(1):140–147.
  • Lu JG, Sun XF, Song Y, et al. 2-D/3-D switchable display by Fresnel-type LC lens. J Disp Technol. 2011;7(4):215–219.
  • Huang YP, Liao LY, Chen CW. 2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses. J Soc Inf Disp. 2010;18:642–646.
  • Huang YP, Chen CW, Huang YC. Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display. J Disp Technol. 2012;8:650–655.
  • Liang D, Luo JY, Zhao WX, et al. 2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens. J Disp Technol. 2012;8(10):609–612.
  • Urruchi V, Algorri JF, Sánchez-Pena JM, et al. Electrooptic characterization of tunable cylindrical liquid crystal lenses. Mol Cryst Liq Cryst. 2012;553(1):211–219.
  • Na JH, Park SC, Kim SU, et al. Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode. Opt Express. 2012;20(2):864–869.
  • Mun BJ, Beak JH, Lee JH, et al. Low cell gap polymeric liquid crystal lens for 2-D3-D switchable. IEEE T Electron Dev. 2013;60(10):3430–3434.
  • Kao YY, Chao PCP, Tu TY. A new LCL-lens array with electrodes of interlaced structure to be applied for auto-stereoscopic 3D displays. Microsyst Technol. 2014;28(8–9):1425–1434.
  • Algorri JF, Pozo VU, Sánchez-Pena JM, et al. An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display. J Disp Technol. 2014;10(9):713–720.
  • Liou JC, Yang CF, Chen FH. Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display. J Disp Technol. 2014;10(8):629–634.
  • Li K, Robertson B, Pivnenko M, et al. High quality micro liquid crystal phase lenses for full resolution image steering in autostereoscopic displays. Opt Express. 2014;22(18):21679–21689.
  • Chang YC, Jen TH, Ting CH, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt Express. 2014;22(3):2714–2724.
  • Hsu CJ, Chih SY, Jhang JJ, et al. Coaxially bifocal liquid crystal lens with switchable optical aperture. Liq Cryst. 2015;43(3):336–342.
  • Kim JY, Kim SU, Lee BY, et al. Lenticular lens array based on liquid crystal with a polarization-dependent focusing effect for 2D–3D image applications. J Inform Disp. 2015;16(1):11–15.
  • Kim HG, Kim JY, Kim JH, et al. Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays. Opt Commun. 2015;357:52–57.
  • Jen TH, Chang YC, Ting CH, et al. Locally controllable liquid crystal lens array for partially switchable 2D/3D display. J Disp Technol. 2015;11(10):839–844.
  • Algorri JF, Urruchi V, García-Cámara B, et al. Liquid crystal microlenses for autostereoscopic displays. Materials. 2016;9(1):1–17.
  • Li K, Yöntem AÖ, Deng Y, et al. Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array. Opt Express. 2017;25(9):9654–9675.
  • Ye M, Sato S. Liquid crystal lens with focus movable along and off axis. Opt Commun. 2003;225(4–6):277–280.
  • Ye M, Wang B, Sato S. Liquid crystal lens with focus movable in focal plane. Opt Commun. 2006;259(2):710–722.
  • Kang SW, Zhang XY, Xie CS, et al. Liquid-crystal microlens with focus swing and low driving voltage. Appl Opt. 2013;52(3):381–387.
  • Love GD. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl Optics. 1997;36(7):1517–1524.
  • Kotova SP, Kvashnin MY, Rakhmatulin MA, et al. Modal liquid crystal wavefront corrector. Opt Express. 2002;10(22):1258–1272.
  • Suzuki Y, Iwasaki N, Kobayashi S, et al. Numerical simulation method for a liquid-crystal aberration compensation device. Jpn J Appl Phys. 2003;42(1):869–872.
  • Hartmut R, Holger H, Joachim K, et al. System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser. Jpn J Appl Phys. 2003;42(2B):956–960.
  • Kotova SP, Clark P, Guralnik IR, et al. Technology and electro-optical properties of modal liquid crystal wavefront correctors. J Opt A-Pure Appl Op. 2003;5(5):S231–S238.
  • Somalingam S, Dressbach K, Hain M, et al. Effective spherical aberration compensation by use of a nematic liquid-crystal device. Appl Optics. 2004;43(13):2722–2729.
  • Knittel J, Richter H, Hain M, et al. Liquid crystal lens for spherical aberration compensation in a blu-ray disc system. IEE P-Sci Meas Tech. 2005;152(1):15–18.
  • Chung SH, Choi SW, Kim YJ, et al. Liquid crystal lens for compensation of spherical aberration in multilayer optical data storage. Jpn J Appl Phys. 2006;45(1):1152–1157.
  • Kotova SP, Patlan VV, Samagin SA, et al. Wavefront formation using modal liquid-crystal correctors. Phys Wave Phenom. 2010;18(2):96–104.
  • Hsieh CT, Hsu YF, Chung CW, et al. Distortion aberration correction device fabricated with liquid crystal lens array. Opt Express. 2013;21(2):1937–1943.
  • Solodar A, Klapp I, Abdulhalim I. Annular liquid crystal spatial light modulator for beam shaping and extended depth of focus. Opt Commun. 2014;323:167–173.
  • Ou CJ, Ou CM, Wang JS. Variation in energy spreading and modulation transfer function for birefringence liquid crystal lens without power modulation. Jpn J Appl Phys. 2010;49(8R):082501.
  • Tsou YS, Lin YH, Wei AC. Concentrating photovoltaic system using a liquid crystal lens. IEEE Photonics Technol Lett. 2012;24(24):2239–2242.
  • Chen M, Chen CH, Lai Y, et al. An electrically tunable polarizer for a fiber system based on a polarization-dependent beam size derived from a liquid crystal lens. IEEE Photonics J. 2014;6(3):1–8.
  • Kawamura M, Ye M, Sato S. Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties. Jpn J Appl Phys. 2005;44(8):6098–6100.
  • Hands PJW, Tatarkova SA, Kirby AK, et al. Modal liquid crystal devices in optical tweezing 3D control and oscillating potential wells. Opt Express. 2006;14(10):4525–4537.
  • Ye M, Wang B, Sato S. Study of liquid crystal lens with focus movable in focal plane by wave front analysis. Jpn Appl Phys. 2006;45(8A):6320–6322.
  • Kawamura M, Ye M, Sato S. Optical particle manipulation using an LC device with eight-divided circularly. Opt Express. 2008;16(14):10059–10065.
  • Kawamura M, Ye M, Sato S. Transient properties of a liquid crystal optical device with an elliptical intensity distribution. Jpn J Appl Phys. 2008;47(8R):6404–6406.
  • Kawamura M, Umeda H, Sato S. Optical trap for manipulating plural particles by using a liquid crystal device. Mol Cryst Liq Cryst. 2009;510(1):191–196.
  • Brooker G, Siegel N, Rosen J, et al. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens. Opt Lett. 2013;38(24):5264–5267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.