190
Views
9
CrossRef citations to date
0
Altmetric
Reviews

The role of hydrogen bonds in the mesomorphic behaviour of supramolecular assemblies organized in dendritic architectures

ORCID Icon, , &
Pages 60-105 | Received 15 Nov 2018, Accepted 16 May 2019, Published online: 29 May 2019

References

  • De Gennes PG, Hervet H. Statistics of «starburst» polymers. J Phys Lett-Paris. 1983;44(9):351–360.
  • Tomalia DA, Baker H, Dewald J, et al. A New class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117–132.
  • Wolf JR. Review: main chain hydrogen-bonded liquid crystalline polymers. Liq Cryst Rev. 2014;2(1):28–46.
  • Caminade AM, Turrin CO, Laurent R, et al. Dendrimers: Towards Catalytic, Material and Biomedical Uses. Dendrimers Towar. Catal. Mater. Biomed. Uses. 2011Wiley Chichester (UK).
  • Vögtle F, Gestermann S, Hesse R, et al. Functional dendrimers. Prog Polym Sci. 2000;25(7):987–1041.
  • Tomalia DA, Fréchet JMJ. Dendrimers and Other Dendritic Polymers 2001 Wiley Chichester (UK). Chapter 1 Introduction to the Dendritic State; p. 3-45.
  • Newkome GR, Moorefield CN, Vogtle F. Dendrimers and Dendrons - Concepts, Syntheses, Applications. 2001 Wiley-VCH Weinheim (GE).
  • Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, Physical properties, and applications. Chem Rev. 1999;99(7):1665–1688.
  • Lee CC, MacKay JA, Fréchet JMJ, et al. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517–1526.
  • Newkome GR, Shreiner CD. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: An overview of the divergent procedures. Polymer (Guildf). 2008;49(1):1–173.
  • Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J Polym Sci Part A Polym Chem. 2002;40(6):2719–2728.
  • Fréchet JMJ, Hawker CJ, Gitsov I, et al. Dendrimers and hyperbranched polymers: Two families of three-dimensional macromolecules with similar but clearly distinct properties. J Macromol Sci - Pure Appl Chem. 1996;33(10):1399–1425.
  • Dvornic PR, Tomalia DA. Starburst® dendrimers: A conceptual approach to nanoscopic chemistry and architecture. Macromol Symp. 1994;88(1):123–148.
  • Ardoin N, Astruc D. Molecular trees - from Syntheses Towards applications. Bull Soc Chim Fr. 1995;132(9):875–909.
  • Tully DC, Fréchet JMJ. Dendrimers at surfaces and interfaces: chemistry and applications. Chem Commun. 2001;14:1229–1239.
  • Jikei M, Kakimoto M. Hyperbranched polymers: a promising new class of materials. Prog Polym Sci. 2001;26(8):1233–1285.
  • Kim YH, Webster OW. Water-soluble hyperbranched polyphenylene; “a unimolecular micelle”? J Am Chem Soc. 1990;112(11):4592–4593.
  • Kim YH. Hyperbranched polymers 10 years after. J Polym Sci Part A Polym Chem. 1998;36(11):1685–1698.
  • Sunder A, Heinemann J, Frey H. Controlling the growth of polymer trees: Concepts and perspectives for hyperbranched polymers. Chem - A Eur J. 2000;6(14):2499–2506.
  • Yates CR, Hayes W. Synthesis and applications of hyperbranched polymers. Eur Polym J. 2004;40(7):1257–1281.
  • Malmström E, Hult A. Hyperbranched polymers: a review. J Macromol Sci Part C. 1997;37(3):555–579.
  • Voit BI. Hyperbranched polymers: A chance and a challenge. Comptes Rendus Chim. 2003;6(8-10):821–832.
  • Grayson SM, Fréchet JMJ. Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev. 2001;101(12):3819–3867.
  • Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110(4):1857–1959.
  • Rosen BM, Wilson CJ, Wilson DA, et al. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev. 2009;109(11):6275–6540.
  • Schlüter AD, Rabe JP. Dendronized polymers: Synthesis, characterization, assembly at Interfaces, and Manipulation. Angew Chemie Int Ed. 2000;39(5):864–883.
  • Frauenrath H. Dendronized polymers - building a new bridge from molecules to nanoscopic objects. Prog Polym Sci. 2005;30(3-4):325–384.
  • Chen Y, Xiong X. Tailoring dendronized polymers. Chem Commun. 2010;46(28):5049–5060.
  • Zhang A. Synthesis, characterization and applications of dendronized polymers. Prog Chem. 2005;17(1):157–171.
  • Teertstra SJ, Gauthier M. Dendrigraft polymers: macromolecular engineering on a mesoscopic scale. Prog Polym Sci. 2004;29(4):277–327.
  • Tschierske C. Fluorinated liquid crystals: Design of soft nanostructures and increased complexity of self-assembly by perfluorinated segments. Top Curr Chem. 2012;318:1–108.
  • Tschierske C. Liquid crystal engineering - New complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem Soc Rev. 2007;36(12):1930–1970.
  • Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Edit. 2013;52(34):8828–8878.
  • Tschierske C. Micro-segregation, molecular shape and molecular topology - Partners for the design of liquid crystalline materials with complex mesophase morphologies. J Mater Chem. 2001;11(11):2647–2671.
  • Pegenau A, Hegmann T, Tschierske C, et al. The importance of micro segregation for mesophase formation: thermotropic columnar mesophases of tetrahedral and other low-aspect-ratio organic materials. Chem Eur J. 1999;5(5):1643–1660.
  • Cook AG, Baumeister U, Tschierske C. Supramolecular dendrimers: Unusual mesophases of ionic liquid crystals derived from protonation of DAB dendrimers with facial amphiphilic carboxylic acids. J Mater Chem. 2005;15(17):1708–1721.
  • Kardas D, Prehm M, Baumeister U, et al. End functionalised liquid crystalline bent-core molecules and first DAB derived dendrimers with banana shaped mesogenic units. J Mater Chem. 2005;15(17):1722–1733.
  • Pegenau A, Xiao CH, Tschierske C, et al. Formation of mesophases based on micro-segregation: columnar liquid- crystalline phases of first generation dendrimers with perfluorinated segments. New J Chem. 1999;23(5):465–467.
  • Tschierske C. Non-conventional liquid crystals - The importance of micro-segregation for self-organisation. J Mater Chem. 1998;8(7):1485–1508.
  • Tschierske C. Liquid crystalline materials with complex mesophase morphologies. Curr Opin Colloid Interface Sci. 2002;7(1-2):69–80.
  • Tschierske C. Microsegregation: from basic concepts to complexity in liquid crystal self-assembly. Isr J Chem. 2012;52(10):935–959.
  • Diele S. On thermotropic cubic mesophases. Curr Opin Colloid Interface Sci. 2002;7(5-6):333–342.
  • Guillon D, Deschenaux R. Liquid-crystalline dendrimers. Curr Opin Solid State Mater Sci. 2002;6(6):515–525.
  • Caminade AM, Turrin CO, Sutra P, et al. Fluorinated dendrimers. Curr Opin Colloid Interface Sci. 2003;8(3):282–295.
  • Matthews OA, Shipway AN, Stoddart JFF. Dendrimers - Branching out from curiosities into new technologies. Prog Polym Sci. 1998;23(1):1–56.
  • Emrick T, Fréchet JMJ. Erratum to ‘self-assembly of dendritic structures’: [Curr Opin Colloid Interface Sci 1999;4(1):15–23]. Curr Opin Colloid Interface Sci. 1999;4(6):457.
  • Fischer M, Vögtle F. Dendrimers: from Design to Application—A progress Report. Angew Chemie Int Ed. 1999;38(7):884–905.
  • Moore JS. Supramolecular polymers. Curr Opin Colloid Interface Sci. 1999;4(2):108–116.
  • Schlenk C, Frey H. Carbosilane dendrimers - Synthesis, functionalization, application. Monatsh Chem. 1999;130(1):3–14.
  • Adronov A, Fréchet J. Light-harvesting dendrimers. Chem Commun. 2000;18:1701–1710.
  • Smith DK, Diederich F. Supramolecular dendrimer chemistry: A Journey through the branched Architecture in dendrimers II Archit. Nanostructure Supramol Chem. 2000;210:183–227.
  • Ponomarenko SA, Boiko NI, Shibaev VP. Liquid-Crystalline dendrimers. Polym Sci Ser C+. 2001;43(1):1–45.
  • Inoue K. Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci. 2000;25(4):453–571.
  • Sun Q, Xu K, Lam JWY, et al. Nanostructured magnetoceramics from hyperbranched polymer precursors. Mater Sci Eng C. 2001;16(1-2):107–112.
  • Allabashi R, Arkas M, Hörmann G, et al. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res. 2007;41(2):476–486.
  • Tsetsekou A, Arkas M, Kritikaki A, et al. Optimization of hybrid hyperbranched polymer/ceramic filters for the efficient absorption of polyaromatic hydrocarbons from water. J Memb Sci. 2008;311(1-2):128–135.
  • Arkas M, Tsiourvas D. Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water. J Hazard Mater. 2009;170(1):35–42.
  • Arkas M, Tsiourvas D, Paleos CM. Functional dendritic polymers for the development of hybrid materials for water purification. Macromol Mater Eng. 2010;295(10):883–898.
  • Tsiourvas D, Tsetsekou A, Arkas M, et al. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates. J Mater Sci Mater Med. 2011;22(1):85–96.
  • Tsiourvas D, Tsetsekou A, Papavasiliou A, et al. A novel hybrid sol-gel method for the synthesis of highly porous silica employing hyperbranched poly(ethyleneimine) as a reactive template. Microporous Mesoporous Mater. 2013;175:59–66.
  • Arkas M. Hybrid organoceramics deriving from dendritic polymers, methods of preparation, optimization techniques and prospected applications. In: Rovira JJR, editor. Recent Advances in Ceramic Materials Research. New York: Nova Science Publishers; 2013. p. 1–30.
  • Bergenudd H, Eriksson P, DeArmitt C, et al. Synthesis and evaluation of hyperbranched phenolic antioxidants of three different generations. Polym Degrad Stab. 2002;76(3):503–509.
  • Burkinshaw SM, Froehling PE, Mignanelli M. The effect of hyperbranched polymers on the dyeing of polypropylene fibres. Dye Pigment. 2002;53(3):229–235.
  • Arkas M, Tsiourvas D, Paleos CM. Functional dendrimeric “nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater. 2003;15(14):2844–2847.
  • Kolhe P, Misra E, Kannan RM, et al. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm. 2003;259(1-2):143–160.
  • Seiler M, Köhler D, Arlt W. Hyperbranched polymers: New selective solvents for extractive distillation and solvent extraction. Sep Purif Technol. 2003;30(2):179–197.
  • Arkas M, Eleades L, Paleos CM, et al. Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. J Appl Polym Sci. 2005;97(6):2299–2305.
  • Arkas M, Tsiourvas D, Paleos CM. Organosilicon dendritic networks in porous ceramics for water purification. Chem Mater. 2005;17(13):3439–3444.
  • Arkas M, Allabashi R, Tsiourvas D, et al. Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol. 2006;40(8):2771–2777.
  • Donnio B, Guillon D. Liquid crystalline dendrimers and polypedes. Adv Polym Sci 2006;201(1):45–155.
  • Marcos M, Martín-Rapún R, Omenat A, et al. Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers. Chem Soc Rev. 2007;36(12):1889–1901.
  • Percec V, Heck J, Lee M, et al. Poly{2-vinyloxyethyl 3,4,5-tris[4-(n-dodecanyloxy)benzyloxy]benzoate}: A self-assembled supramolecular polymer similar to tobacco mosaic virus. J Mater Chem. 1992;2(10):1033–1039.
  • Ponomarenko SA, Rebrov EA, Bobrovsky AY, et al. Liquid crystalline carbosilane dendrimers: first generation. Liq Cryst. 1996;21(1):1–12.
  • Percec V, Schlueter D, Ronda JC, et al. Tubular architectures from polymers with Tapered side groups. assembly of side groups via a rigid helical chain conformation and flexible helical chain conformation induced via assembly of side groups. Macromolecules. 1996;29(5):1464–1472.
  • Pesak DJ, Moore JS. Columnar liquid crystals from shape-persistent dendritic molecules. Angew Chemie Int Ed. 1997;36(15):1636–1639.
  • Percec V, Schlueter D. Mechanistic investigations on the formation of supramolecular cylindrical shaped oligomers and polymers by living ring opening metathesis polymerization of a 7-oxanorbornene monomer substituted with two tapered monodendrons. Macromolecules. 1997;30(19):5783–5790.
  • Balagurusamy VSK, Ungar G, Percec V, et al. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J Am Chem Soc. 1997;119(7):1539–1555.
  • Hudson SD, Jung HT, Percec V, et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science. 1997;278(5337):449–452.
  • Prokhorova SA, Sheiko SS, Möller M, et al. Molecular imaging of monodendron jacketed linear polymers by scanning force microscopy. Macromol Rapid Commun. 1998;19(7):359–366.
  • Percec V, Ahn CH, Cho WD, et al. Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groups. J Am Chem Soc. 1998;120(34):8619–8631.
  • Brewis M, Clarkson GJ, Holder AM, et al. Phthalocyanines substituted with dendritic wedges: glass-forming columnar mesogens. Chem Commun. 1998;9:969–970.
  • Percec V, Heck J, Tomazos D, et al. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase. J Chem Soc Perk T1. 1993(22):2799–2811.
  • Meier H, Lehmann M. Stilbenoid dendrimers. Angew Chemie - Int Ed. 1998;37(5):643–645.
  • Percec V, Cho WD, Mosier PE, et al. Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J Am Chem Soc. 1998;120(43):11061–11070.
  • Percec V, Ahn CH, Ungar G, et al. Controlling polymer shape through the self-assembly of dendritic side- groups. Nature. 1998;391(6663):161–164.
  • Percec V, Schlueter D, Ungar G, et al. Hierarchical control of internal superstructure, diameter, and stability of supramolecular and macromolecular columns generated from tapered monodendritic building blocks. Macromolecules. 1998;31(6):1745–1762.
  • Prokhorova SA, Sheiko SS, Ahn CH, et al. Molecular conformations of Monodendron-jacketed polymers by Scanning force Microscopy. Macromolecules. 1999;32(8):2653–2660.
  • Yin R, Zhu Y, Tomalia DA. Architectural copolymers: Rod-shaped, cylindrical dendrimers. J Am Chem Soc. 1998;120(11):2678–2679.
  • Percec V, Peterca M, Dulcey AE, et al. Hollow spherical supramolecular dendrimers. J Am Chem Soc. 2008;130(39):13079–13094.
  • Percec V, Peterca M, Tsuda Y, et al. Elucidating the structure of the pm3¯n cubic phase of supramolecular dendrimers through the modification of their aliphatic to aromatic volume ratio. Chem - A Eur J. 2009;15(36):8994–9004.
  • Percec V, Heck JA, Tomazos D, et al. The influence of the complexation of sodium and lithium triflate on the self-assembly of tubular-supramolecular architectures displaying a columnar mesophase based on taper-shaped monoesters of oligoethylene oxide with 3,4,5-tris[p-(n-dodecan-1-yloxy)benz. J Chem Soc Perk T2. 1993(12):2381–2388.
  • Percec V, Johansson G, Heck J, et al. Molecular recognition directed self-assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-1,4,7,10,13-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate. J Chem Soc Perk T1. 1993(13):1411–1420.
  • Johansson G, Percec V, Ungar G, et al. Molecular recognition directed self-assembly of Tubular liquid-crystalline and crystalline supramolecular architectures from Taper shaped (15-crown-5)methyl 3,4,5-tris(P-alkyloxybenzyloxy)Benzoates and (15-crown-5)methyl 3,4,5-tris(P-dodecyloxy) Benzoate. J Chem Soc Perk T1. 1994(4):447–459.
  • Percec V, Tomazos D, Heck J, et al. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J Chem Soc Perk T2. 1994(1):31–44.
  • Percec V, Schlueter D, Kwon YK, et al. Dramatic stabilization of a hexagonal columnar mesophase Generated from supramolecular and macromolecular columns by the Semifluorination of the alkyl groups of their Tapered building blocks. Macromolecules. 1995;28(26):8807–8818.
  • Johansson G, Percec V, Ungar G, et al. Fluorophobic effect in the self-assembly of polymers and model compounds containing tapered groups into supramolecular columns. Macromolecules. 1996;29(2):646–660.
  • Percec V, Johansson G, Ungar G, et al. Fluorophobic effect induces the self-assembly of semifluorinated tapered monodendrons containing crown ethers into supramolecular columnar dendrimers which exhibit a homeotropic hexagonal columnar liquid crystalline phase. J Am Chem Soc. 1996;118(41):9855–9866.
  • Percec V. From molecular to macromolecular liquid crystals. In: Collings PJ, Patel JS, editors. Handbook of liquid crystal research; 2004. Chapter 8. Oxford: Oxford University Press; 1997. p. 27–49.
  • Moore JS. Shape-Persistent molecular architectures of nanoscale Dimension. Acc Chem Res. 1997;30(10):402–413.
  • Guillon D, Nierengarten JF, Gallani JL, et al. Amphiphilic and mesomorphic fullerene-based dendrimers. Macromol Symp. 2003;192:63–73.
  • Donnio B. Liquid-crystalline metallodendrimers. Metallodendrimers Special Issue Inorganica Chim Acta. 2014;409(Part A):53–67.
  • Barberá J, Garcés AC, Jayaraman N, et al. Sugar-coated discotic liquid crystals. Adv Mater. 2001;13(3):175–180.
  • Lee M, Cho BK, Zin WC. Supramolecular structures from rod-coil block copolymers. Chem Rev. 2001;01(12):3869–3892.
  • Donnio B, Guillon D. Liquid crystalline dendrimers and polypedes. Adv Polym Sci. 2006;201:45–155.
  • Saez IM, Goodby JW. Supermolecular liquid crystals. In: Kato T, editor. Liquid crystalline functional assemblies and their supramolecular structures. Vol. 128, structure and bonding. Berlin Heidelberg: Springer-verlag; 2008. p. 1–62.
  • Saez IM, Goodby JW. Supermolecular liquid crystals. J Mater Chem A Mater. 2005;15(1):26–40.
  • Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2001;28(8):1127–1161.
  • Donnio B, Barberá J, Giménez R, et al. Controlled molecular conformation and morphology in poly(amidoamine) (PAMAM) and poly(propyleneimine) (DAB)dendrimers. Macromolecules. 2002;35(2):370–381.
  • Gehringer L, Bourgogne C, Guillon D, et al. Main-chain liquid-crystalline dendrimers based on amido-core moieties -effect of the core structure. J Mater Chem. 2005;15(17):1696–1703.
  • Bitan-Cherbakovsky L, Aserin A, Garti N. The effect of dendrimer generations on the structure of QG LLC mesophase and drug release. Colloids Surfaces B Biointerfaces. 2014;122:30–37.
  • Kim DY, Lim SI, Jung D, et al. Self-assembly and polymer-stabilization of lyotropic liquid crystals in aqueous and non-aqueous solutions. Liq Cryst Rev. 2017;5(1):34–52.
  • Felekis T, Tziveleka L, Tsiourvas D, et al. Liquid crystals derived from hydrogen-bonded supramolecular complexes of pyridinylated hyperbranched polyglycerol and cholesterol-based carboxylic acids. Macromolecules. 2005;38(5):1705–1710.
  • Felekis T, Tsiourvas D, Tziveleka L, et al. Hydrogen-bonded liquid crystals derived from supramolecular complexes of pyridylated poly(propyleneimine) dendrimers and a cholesterol-based carboxylic acid. Liq Cryst. 2005;32(1):39–43.
  • Didehban K, Namazi H, Entezami AA. Dendrimer-based hydrogen-bonded liquid crystalline complexes: Synthesis and characterization. Eur Polym J. 2009;45(6):1836–1844.
  • Xu J, Ling TC, He C. Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. J Polym Sci Part A Polym Chem. 2008;46(14):4691–4703.
  • Lehmann M. Star mesogens (Hekates) - tailor-made molecules for programming supramolecular functionality. Chem Eur J. 2009;15(15):3638–3651.
  • Didehban K, Namazi H, Entezami AA. Non-covalent dendrimer-based liquid crystalline complexes: Synthesis and characterization. Eur Polym J. 2010;46(9):1923–1931.
  • Ishihara S, Furuki Y, Takeoka S. A hydrogen-bonded supramolecular hexagonal columnar liquid crystal Composed of a tricarboxylic triphenylene and monopyridyl dendrons. Chem Lett. 2007;36(2):282–283.
  • Ishihara S, Furuki Y, Hill JP, et al. Homeotropic Alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains. J Nanosci Nanotechnol. 2014;14(7):5130–5137.
  • Castelar S, Barberá J, Marcos M, et al. Supramolecular dendrimers based on the self-assembly of carbazole-derived dendrons and triazine rings: liquid crystal, photophysical and electrochemical properties. J Mater Chem C. 2013;1(44):7321–7332.
  • Bucoş M, Sierra T, Golemme A, et al. Multifunctional supramolecular dendrimers with an s-triazine ring as the central core: liquid crystalline, fluorescence and photoconductive properties. Chem - A Eur J. 2014;20(32):10027–10037.
  • Chuang WT, Huang YC, Su CJ, et al. Successive order-order transitions of the hierarchical morphology of a dendron-jacketed block copolymer via subsequent stretching alignment and self-assembly. Soft Matter. 2012;8:11163–11168.
  • Gharbia M, Gharbi A, Nguyen HT, et al. Polycatenar liquid crystals with long rigid aromatic cores: A review of recent works. Curr Opin Colloid Interface Sci. 2002;7(5-6):312–325.
  • Nguyen HT, Destrade C, Malthete J. Phasmids and polycatenar mesogens. Adv Mater. 1997;9(5):375–388.
  • Malthěte J, Nguyen HT, Destrade C. Phasmids and polycatenar mesogens. Liq Cryst. 1993;13(2):171–187.
  • Lee HK, Lee H, Ko YH, et al. Synthesis of a nanoporous polymer with hexagonal channels from supramolecular discotic liquid crystals. Angew Chemie - Int Ed. 2001;40(14):2669–2671.
  • Kraft A, Reichert A, Kleppinger R. Supramolecular liquid crystals with columnar mesophases through self- assembly of carboxylic acids around a tribasic core. Chem Commun. 2000;12:1015–1016.
  • Uchida J, Kato T. Liquid-crystalline fork-like dendrons. Liq Cryst. 2017;44(12-13):1816–1829.
  • Tian Y, Kamata K, Yoshida H, et al. Synthesis, liquid-crystalline properties, and supramolecular nanostructures of dendronized poly(isocyanide)s and their precursors. Chem - A Eur J. 2005;12(2):584–591.
  • Hahn S-W, Yun Y-K, Jin J-I, et al. Thermotropic hyperbranched polyesters prepared from 2-[(10-(4-hydroxyphenoxy)decyl)oxy]terephthalic acid and 2-[(10-((4`Hydroxy1,1`-biphenyl-4-yl)oxy)decyl)oxy]terephthalic acid. Macromolecules. 1998;31:6417–6425.
  • Barberá J, Marcos M, Serrano JL. Dendromesogens: liquid crystal organizations versus starburst structures. Chem - A Eur J. 1999;5(6):1834–1840.
  • Marcos M, Giménez R, Serrano JL, et al. Dendromesogens: liquid crystal organizations of poly(amidoamine) dendrimers versus starburst structures. Chem - A Eur J. 2001;7(5):1006–1013.
  • Barberá J, Donnio B, Gehringer L, et al. Self-organization of nanostructured functional dendrimers. J Mater Chem. 2005;15(38):4093–4105.
  • Donnio B, Buathong S, Bury I, et al. Liquid crystalline dendrimers. Chem Soc Rev. 2007;36(9):1495–1513.
  • Barberá J, Jiménez J, Laguna A, et al. Cyclotriphosphazene as a dendritic core for the preparation of columnar supermolecular liquid crystals. Chem Mater. 2006;18(23):5437–5445.
  • Kuang G, Ji Y, Jia X, et al. Supramolecular self-assembly of dimeric dendrons with different aliphatic spacers. Chem Mater. 2009;21(3):456–462.
  • Tsiourvas D, Arkas M. Columnar and smectic self-assembly deriving from non ionic amphiphilic hyperbranched polyethylene imine polymers and induced by hydrogen bonding and segregation into polar and non polar parts. Polym (United Kingdom. 2013;54(3):1114–1122.
  • Stebani U, Lattermann G. Unconventional mesogens of hyperbranched amides and corresponding ammonium derivatives. Adv Mater. 1995;7(6):578–581.
  • Precup-Blaga FS, Schenning APHJ, Meijer EW. Liquid crystalline oligo(p-phenylene vinylene)-terminated poly(propylene imine) dendrimers. Synthesis and characterization. Macromolecules. 2003;36(3):565–572.
  • Zhou Y, Xu M, Li T, et al. Stabilization of the mesomorphic phase in a self-assembled two-component system. J Colloid Interface Sci. 2008;321(1):205–211.
  • Shu J, Dudenko D, Esmaeili M, et al. Coexistence of helical morphologies in columnar stacks of star-shaped discotic hydrazones. J Am Chem Soc. 2013;135(30):11075–11086.
  • Anokhin DV, Lejnieks J, Mourran A, et al. Interplay between H-bonding and alkyl-chain ordering in self-assembly of monodendritic L-alanine derivatives. Chem Phys Chem. 2012;13(6):1470–1478.
  • Kanie K, Nishii M, Yasuda T, et al. Self-assembly of thermotropic liquid-crystalline folic acid derivatives: hydrogen-bonded complexes forming layers and columns. J Mater Chem. 2001;11(11):2875–2886.
  • Kato T, Matsuoka T, Nishii M, et al. Supramolecular chirality of thermotropic liquid-crystalline folic acid derivatives. Angew Chemie - Int Ed. 2004;43(15):1969–1972.
  • Kamikawa Y, Nishii M, Kato T. Supramolecular chiral cubic phases formed by folic acid derivatives. Mol Cryst Liq Cryst. 2005;435:95/[755]–105/[765].
  • Kamikawa Y, Nishii M, Kato T. Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures. Chem Eur J. 2004;10(23):5942–5951.
  • Kanie K, Yasuda T, Nishii M, et al. Hydrogen-Bonded lyotropic liquid crystals of folic acids: Responses to environment by exhibiting different complex patterns. Chem Lett. 2001;6:480–481.
  • Kamikawa Y, Fujimoto N, Donnio B, et al. Self-assembled structures of liquid-crystalline oligopeptide dimers. Mol Cryst Liq Cryst. 2010;516:132–143.
  • Nishii M, Matsuoka T, Kamikawa Y, et al. Thermotropic liquid-crystalline peptide derivatives: oligo(glutamic acid)s forming hydrogen-bonded columns. Org Biomol Chem. 2005;3(5):875–880.
  • Mitani M, Yamane S, Yoshio M, et al. Mechanochromic photoluminescent liquid crystals containing 5,5′-Bis(2-phenylethynyl)-2,2′-bithiophene. Mol Cryst Liq Cryst. 2014;594(1):112–121.
  • Yamane S, Tanabe K, Sagara Y, et al. Stimuli-responsive photoluminescent liquid crystals. Top Curr Chem. 2012;318:395–406.
  • Sagara Y, Kato T. Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition. Angew Chemie - Int Ed. 2008;47(28):5175–5178.
  • Sagara BY, Yamane S, Mutai T, et al. A stimuli-responsive, photoluminescent, anthracene- based liquid crystal: emission color determined by thermal and mechanical processes. Adv Funct Mater. 2009;19(12):1869–1875.
  • Sagara Y, Kato T. A mechanical and thermal responsive luminescent liquid crystal forming a colourless film under room light. Supramol Chem. 2011;23(3-4):310–314.
  • Sagara Y, Kato T. Brightly tricolored mechanochromic luminescence from a single-luminophore liquid crystal: reversible writing and erasing of images. Angew Chemie - Int Ed. 2011;50(39):9128–9132.
  • Lehmann M, Köhn C, Meier H, et al. A. supramolecular order of stilbenoid dendrons: importance of weak interactions. J Mater Chem C Mater. 2006;16(5):441–451.
  • Percec V, Bera TK, Glodde M, et al. Hierarchical self-assembly, coassembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer. Chem - A Eur J. 2003;9(4):921–935.
  • Percec V, Ahn CH, Bera TK, et al. Coassembly of a hexagonal columnar liquid crystalline superlattice from polymer(s) coated with a three-cylindrical bundle supramolecular dendrimer. Chem - A Eur J. 1999;5(3):1070–1083.
  • Percec V, Peterca M, Yurchenko ME, et al. Thixotropic twin-dendritic organogelators. Chem - A Eur J 2008;14(3):909–918.
  • Gao B, Xia D, Zhang L, et al. Helical columnar liquid crystals based on dendritic peptides substituted perylene bisimides. J Mater Chem. 2011;21(40):15975–15980.
  • Bury I, Heinrich B, Bourgogne C, et al. Supramolecular self-organization of “janus-like” diblock codendrimers: Synthesis, thermal behavior, and phase structure modeling. Chem - A Eur J. 2006;12(32):8396–8413.
  • Hawker CJ, Wooley KL, Fréchet JMJ. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin 1. 1993;1(12):1287–1297.
  • Patri AK, Majoros IJ, Baker Jr JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002;6(4):466–471.
  • Kitsou I, Panagopoulos P, Maggos T, et al. Development of SiO2 @TiO2 core-shell nanospheres for catalytic applications. Appl Surf Sci. 2018;441:223–231.
  • Arkas M, Kithreoti G, Boukos N, et al. Two completely different biomimetic reactions mediated by the same matrix producing inorganic/organic/inorganic hybrid nanoparticles. Nano-Structures and Nano-Objects. 2018;14:138–148.
  • Petrakli F, Arkas M, Tsetsekou A. α-Alumina nanospheres from nano-dispersed boehmite sythesized by a wet chemical route. J Am Ceram Soc 2018;101(8):3508–3519.
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev. 2004;33(1):43–63.
  • Hecht S, Fréchet JMJ. Dendritic encapsulation of function: Applying nature's site isolation principle from biomimetics to materials science. Angew Chem Int Ed. 2001;40(1):74–91.
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–99.
  • Brown MD, Schätzlein AG, Uchegbu IF. Gene delivery with synthetic (nonviral) carriers. Int J Pharm. 2001;229(1-2):1–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.