155
Views
4
CrossRef citations to date
0
Altmetric
Special Issue: 4th MICCAI workshop on Deep Learning in Medical Image Analysis

Automatic cine-based detection of patients at high risk of heart failure with reduced ejection fraction in echocardiograms

, , , , , , , , & show all
Pages 502-508 | Received 21 Nov 2018, Accepted 23 Jul 2019, Published online: 07 Oct 2019

References

  • Behnami D, Luong C, Vaseli H, Abdi A, Girgis H, Hawley D, Rohling R, Gin K, Abolmaesumi P, Tsang T. 2018. Automatic detection of patients with a high risk of systolic cardiac failure in echocardiography. In: Stoyanov D. et al. editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. DLMIA 2018, ML-CDS 2018. Lecture Notes in Computer Science, vol 11045. Cham: Springer; p. 65–73.
  • Bresser P, De Beer J, De Wet Y. 2015. A study investigating variability of left ventricular ejection fraction using manual and automatic processing modes in a single setting. Radiography. 21(1):e41–e44.
  • Bytyçi I, Bajraktari G. 2015. Mortality in heart failure patients. Anatolian J Cardiol. 15(1):63.
  • Cameli M, Mondillo S, Solari M, Righini FM, Andrei V, Contaldi C, De Marco E, Di Mauro M, Esposito R, Gallina S, et al. 2016. Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev. 21(1):77–94.
  • Carneiro G, Nascimento JC. 2013. Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell. 99(1):1.
  • Chollet F, et al. 2015. Keras. https://keras.io/getting-started/faq/.
  • Chung J, Gulcehre C, Cho K, Bengio Y. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv Preprint arXiv:14123555.
  • Cole GD, Dhutia NM, Shun-Shin MJ, Willson K, Harrison J, Raphael CE, Zolgharni M, Mayet J, Francis DP. 2015. Defining the real-world reproducibility of visual grading of left ventricular function and visual estimation of left ventricular ejection fraction: impact of image quality, experience and accreditation. Int J Cardiovasc Imaging. 31(7):1303–1314.
  • Deo RC, Zhang J, Hallock LA, Gajjala S, Nelson L, Fan E, Aras MA, Jordan C, Fleischmann KE, Melisko M, et al. 2017. An end-to-end computer vision pipeline for automated cardiac function assessment by echocardiography. CoRR. https://ui.adsabs.harvard.edu/abs/2014arXiv1412.3555C/abstract.
  • Dong S, Luo G, Sun G, Wang K, Zhang H. 2016. A left ventricular segmentation method on 3d echocardiography using deep learning and snake. In: Computing in Cardiology Conference (CinC). IEEE; p. 473–476. https://ieeexplore.ieee.org/abstract/document/7868782/references#references
  • Gu B, Shan Y, Sheng VS, Zheng Y, Li S. 2018. Sparse regression with output correlation for cardiac ejection fraction estimation. Inf Sci (Ny). 423:303–312.
  • Gudmundsson P, Rydberg E, Winter R, Willenheimer R. 2005. Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol. 101(2):209–212.
  • Huang G, Liu Z, van der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. In: 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR). July. p. 2261–2269.
  • Jafari MH, Girgis H, Liao Z, Behnami D, Abdi A, Vaseli H, Luong C, Rohling R, Gin K, Tsang T, et al. 2018. A unified framework integrating recurrent fully-convolutional networks and optical flow for segmentation of the left ventricle in echocardiography data. In: Stoyanov D. et al. editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. DLMIA 2018, ML-CDS 2018. Lecture Notes in Computer Science, vol 11045. Cham: Springer; p. 29–37.
  • Kabani A, El-Sakka MR. 2016. Estimating ejection fraction and left ventricle volume using deep convolutional networks. In: Campilho A., Karray F. editors. Image analysis and recognition. ICIAR 2016. Lecture Notes in Computer Science, vol 9730. Cham: Springer; p. 678–686.
  • Kabani A, El-Sakka MR. 2017. Ejection fraction estimation using a wide convolutional neural network. In: Karray F., Campilho A., Cheriet F. editors. Image analysis and recognition. ICIAR 2017. Lecture Notes in Computer Science, vol 10317. Cham: Springer; p. 87–96.
  • Kim C, Hur J, Kang BS, Choi HJ, Shin JH, Kim TH, Chung JH. 2017. Can an offsite expert remotely evaluate the visual estimation of ejection fraction via a social network video call? J Digit Imaging. 30(6):718–725.
  • Leclerc S, Grenier T, Espinosa F. 2017. A fully automatic and multi-structural segmentation of the left ventricle and the myocardium on highly heterogeneous 2d echocardiographic data. 2017 IEEE International Ultrasonics symposium (IUS), 2017, Washington, DC. IEEE; p. 1–4.
  • Ngo TA, Lu Z, Carneiro G. 2017. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 35:159–171.
  • Nosir Y, Vletter WB, Boersma E, Frowijn R, Ten Cate FJ, Fioretti PM, Roelandt JR. 1997. The apical long-axis rather than the two-chamber view should be used in combination with the four-chamber view for accurate assessment of left ventricular volumes and function. Eur Heart J. 18(7):1175–1185.
  • Organization WH, et al. 2014. Global status report on noncommunicable diseases 2014. World Health Organization.
  • Savarese G, Lund LH. 2017. Global public health burden of heart failure. Cardiac Fail Rev. 3(1):7–11.
  • Silva JF, Silva JM, Guerra A, Matos S, Costa C. 2018. Ejection fraction classification in transthoracic echocardiography using a deep learning approach. In: 2018 IEEE 31st international symposium on Computer-Based Medical Systems (CBMS), Karlstad. IEEE; p. 123–128.
  • Van Woudenberg N, Liao Z, Abdi AH, Girgis H, Luong C, Vaseli H, Behnami D, Zhang H, Gin K, Rohling R, et al. 2018. Quantitative echocardiography: real-time quality estimation and view classification implemented on a mobile android device. In: Stoyanov D. et al. editors. Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Cham: Springer; p. 74–81.
  • Xue W, Lum A, Mercado A, Landis M, Warrington J, Li S. 2017. Full quantification of left ventricle via deep multitask learning network respecting intra-and inter-task relatedness. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S., editors. Medical Image Computing and Computer Assisted Intervention (MICCAI). Lecture Notes in Computer Science, vol 10435. Cham: Springer; p. 276–284.
  • Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, Fan E, Aras MA, Jordan C, Fleischmann KE, et al. 2017. A web-deployed computer vision pipeline for automated determination of cardiac structure and function and detection of disease by two-dimensional echocardiography. arXiv:170607342.
  • Zhen X, Wang Z, Islam A, Bhaduri M, Chan I, Li S. 2016. Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal. 30:120–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.