693
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Classification techniques in breast cancer diagnosis: A systematic literature review

, , & ORCID Icon
Pages 50-77 | Received 28 Sep 2019, Accepted 13 Aug 2020, Published online: 06 Jan 2021

References

  • A. Keleş, A. Keleş, Yavuz U. 2011. Expert system based on neuro-fuzzy rules for diagnosis breast cancer. Expert Systems with Applications. 38:5719–5726 5 10.1016/j.eswa.2010.10.061
  • Acharya U R, Ng EYK, Chang YH, Yang J,Kaw GJL. 2008. Computer-based identification of breast cancer using digitized mammograms. J Med Syst. 32: 499–507
  • Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH. 2018. Towards precision medicine: from quantitative imaging to radiomics. J Zhejiang Univ Sci B. 19:6–24. doi:10.1631/jzus.B1700260.
  • Adegoke VF, Chen D, Banissi E, Barikzai S. 2017. Prediction of breast cancer survivability using ensemble algorithms. In: Proc Int Conf Smart Syst Technol 2017, SST 2017. Osijek, Croatia; p. 223–231 10.1109/SST.2017.8188699
  • Ahmed AI, Hasan MM. 2003. A hybrid approach for decision making to detect breast cancer using data mining and autonomous agent based on human agent teamwork. 2014 17th Int Conf Comput Inf Technol ICCIT 2014.:320–325. doi:10.1109/ICCITechn.2014.7073116
  • AhmedMedjahed S, Ait Saadi T, Benyettou A. 2013. Breast Cancer Diagnosis by using k-Nearest Neighbor with Different Distances and Classification Rules. International Journal of Computer Applications. 62:1–5 1 doi:10.5120/10041-4635
  • Akay, MF. 2009. Support vector machines combined with feature selection for breast cancer diagnosis. Istanbul Univ - J Electr Electron Eng [Internet]. 36: 36: 36 3240–3247. Available from: http://dx.doi.org/10.1016/j.eswa.2008.01.009
  • Alfonso R, Asoke KN. 2008. DETAILED-CONTOUR INSENSITIVE FEATURES FOR AUTOMATED ANALYSIS OF BREAST MASSES IN MAMMOGRAMS. In: 2008 IEEE Int Conf Acoust Speech Signal Process. Las Vegas, United States; p. 585–588
  • Alharbi A, Tchier F. 2015. A Fuzzy-Genetic Algorithm method for the Breast Cancer diagnosis problem. In: Ninth Int Conf Adv Eng Comput Appl Sci ADVCOMP 2015 July 19–24. Nice, France; p. 122–127
  • Aličković E, Subasi A. 2017. Breast cancer diagnosis using GA feature selection and Rotation Forest. Neural Computing and Applications. 28:753–763 4 doi:10.1007/s00521-015-2103-9
  • Al-Masni MA, Al-Antari MA, Park JM, Gi G, Kim TY, Rivera P, Valarezo E, Han S.-M., Kim T.-S.. 2017. Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. Seogwipo; p. 1230–1233 doi:10.1109/EMBC.2017.8037053
  • Aloraini, A. 2012. DIFFERENTMACHINE LEARNING ALGORITHMS FOR BREAST CANCER DIAGNOSIS. Int J Artif Intell Appl. 3:21–30
  • Al-Salihy NK, Ibrikci T. 2017. Classifying breast cancer by using decision tree algorithms. In: Proc 6th Int Conf Softw Comput Appl - ICSCA ’17 . Bangkok Thailand; p. 144–148 doi:10.1145/3056662
  • Alyami R, Alhajjaj J, Alnajrani B, Elaalami I, Alqahtani A, Aldhafferi N, Owolabi TO, Olatunji SO. 2017. Investigating the effect of correlation based feature selection on breast cancer diagnosis using artificial neural network and support vector machines. In: 2017 Int Conf Informatics, Heal Technol ICIHT 2017. Riyadh, Saudi Arabia doi:10.1109/ICIHT.2017.7899011
  • Anand, S. 2012. Analysis of SEER Dataset for Breast Cancer Diagnosis using C4.5 Classification Algorithm. Int J Adv Res Comput Commun Eng [Internet]. 1:72–77. Available from: www.ijarcce.com
  • André Tùlio C. S. S., Rangayyan RM. 2006. Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features. J Electron Imaging. 15:013019 1 doi:10.1117/1.2178271
  • Araújo ADS, Conci A, Resmini R, Montenegro A, Araújo C, Lebon F. 2018. Computer aided diagnosis for breast diseases based on infrared images. In: Proc IEEE/ACS Int Conf Comput Syst Appl AICCSA. Vol. 2017-Octob. Hammamet, Tunisia; p. 172–177
  • Arnau O, Jordi F, Reyer Z. 2005. AUTOMATIC CLASSIFICATION OF BREAST DENSITY. In: Image Process 2005 ICIP 2005 IEEE Int Conf. Vol. 2. [place unknown]; p. 0–3
  • Arora M, Tagra D. 2012. Neuro-fuzzy expert system for breast cancer diagnosis. In: Proc Int Conf Adv Comput Commun Informatics - ICACCI ’12 [Internet]. [place unknown]; p. 979. doi:10.1145/2345396
  • Asri H, Mousannif H, Al Moatassime H, Noel T. 2016. Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis. Procedia Computer Science. 83:1064–1069 doi:10.1016/j.procs.2016.04.224
  • Azar, AT,El-Said, SA. 2013. Probabilistic neural network for breast cancer classification. Neural Comput Appl. 23: 1737–1751
  • Azmi MSBM, Cob ZC. 2010. Breast cancer prediction based on backpropagation algorithm. Proceeding, 2010 IEEE Student Conf Res Dev - Eng Innov Beyond, SCOReD 2010.:164–168
  • Baba NM, Makhtar M, Fadzli SA, Awang MK. Current issues in ensemble methods and its applications. J Theor Appl Inf Technol. 2015;81:266–276.
  • Baez E, Huber A, Vetter M, Hackelöer B-J. 2003. Minimal invasive complete excision of benign breast tumors using a three-dimensional ultrasound-guided mammotome vacuum device. Ultrasound Obs Gynecoll. 21:267–272. doi:10.1002/uog.74.
  • Bagui SC, Bagui S, Pal K, Pal NR. 2003. Breast cancer detection using rank nearest neighbor classification rules. Pattern Recognition. 36:25–34 1 10.1016/S0031-3203(02)00044-4
  • Bakkouri I, Afdel K. 2018. Multi-scale CNN based on region proposals for efficient breast abnormality recognition. Multimed Tools Appl.:1–22 10 78 doi:10.1007/s11042-018-6267-z
  • Bardou D, Zhang K, Ahmad SM. 2018. Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks. IEEE Access. 6: 24680–24693
  • Bashir S, Qamar U, Khan FH. 2015. Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble. Qual Quant. 49: 2061–2076
  • Beevi K S., Nair M S., Bindu G R., Tang Z-J, Song Y, Zhu J-M, Liu Z-G. 2017. A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks. IEEE Journal of Translational Engineering in Health and Medicine. 5:1–11 doi:10.1109/JTEHM.2017.2694004
  • Begum P, Richardson CE, Carmichael AR. Obesity in post menopausal women with a family history of breast cancer : prevalence and risk awareness. Int Semin Surg. 2009;5:1–5.
  • Benhar H, Idri A, Fernández-Alemán JL. A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. J Med Syst [Internet]. 2019;43:17. [cited 2020 May 12]. http://www.ncbi.nlm.nih.gov/pubmed/30542772.
  • Benhar H, Idri A, Fernández-Alemán L. 2020. Data preprocessing for heart disease classification: A systematic literature review. Comput Methods Programs Biomed. 195:105635. doi:10.1016/j.cmpb.2020.105635.
  • Bevilacqua V, Mastronardi G, Menolascina F, Pannarale P, Pedone A. 2006. A Novel Multi-Objective Genetic Algorithm Approach to Artificial Neural Network Topology Optimisation: The Breast Cancer Classification Problem. In: 2006 IEEE Int Jt Conf Neural Netw Proc [Internet]. Vancouver, BC, Canada; p. 1958–1965. Available from: 10.1109/IJCNN.2006.246940
  • Bhardwaj A, Tiwari A, Chandarana D, Babel D. 2014. A genetically optimized neural network for classification of breast cancer disease. Proc - 7th Int Conf Biomed Eng Informatics, BMEI 2014.:693–698. doi:10.1109/BMEI.2014.7002862
  • Bombardieri E, Bonadonna G, Gianni L. Breast cancer : nuclear medicine in diagnosis and therapeutic options. [place unknown]: Springer;2008.
  • Boutorh A, Guessoum A. 2015. Classication of SNPs for breast cancer diagnosis using neural-network-based association rules. In: 12th Int Symp Program Syst ISPS 2015. Algeria; p. 285–293 doi:10.1109/ISPS.2015.7244998
  • Bovis K, Singh S. 2000. Detection of masses in mammograms using texture features. Proceedings-International Conf Pattern Recognit. 15:267–269 10.1109/ICPR.2000.906064
  • Bowyer K. 2012. Mentoring Advice on “Conferences Versus Journals” for CSE Faculty [Internet].:1–9. accessed 2019 Dec 11. Available from: http://www3.nd.edu/~kwb/Mentoring_Conferences_Journals.pdf
  • Breast Cancer Data Set. 2018. cited 2019 Mar 18. https://archive.ics.uci.edu/ml/datasets/breast+cancer
  • Breast Cancer Risk Factors. 2019. cited 2018 Dec 17. https://www.breastcancer.org/risk/factors
  • Breast Cancer: Symptoms, Diagnosis, Types, and More. 2018. accessed 2018 Dec 11. https://www.breastcancer.org/symptoms
  • BreastCancer. 2018. WHO [Internet]. cited 2019 Jan 16: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
  • Breast cancer.org. 2018. cited 2019 Apr 9. https://www.breastcancer.org/symptoms/understand_bc/what_is_bc
  • Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M. Lessons from applying the systematic literature review process within the software engineering domain. J Syst Softw [Internet]. 2007;80:571–583. doi:10.1016/j.jss.2006.07.009.
  • Brook A, Isler E, Peleg D, Kimmel R. 2008. Breast Cancer Diagnosis From Biopsy Images Using Generic Features and SVMs, Technical Report CS-2008-07. Haïfa, Israël
  • Burnside ES, Davis J, Chhatwal J, Alagoz O, Lindstrom MJ, Geller BM, Littenberg B, Shaffer KA, Kahn CE, Page CD. 2009. Probabilistic Computer Model Developed from Clinical Data in National Mammography Database Format to Classify Mammographic Findings. Radiology [Internet]. 251: 251: 251663–672. Available from: http://pubs.rsna.org/doi/10.1148/radiol.2513081346 3 doi:10.1148/radiol.2513081346
  • Cai T, He H, Zhang W. 2018. Breast Cancer Diagnosis Using Imbalanced Learning and Ensemble Method. Applied and Computational Mathematics. 7:146–154 3 doi:10.11648/j.acm.20180703.20
  • Campanini R, Dongiovanni D, Iampieri E, Lanconelli N, Masotti M, Palermo G, Riccardi A, Roffilli M. 2004. A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys Med Biol. 49:961–975 6 doi:10.1088/0031-9155/49/6/007
  • Carneiro G, Nascimento J, Bradley AP. 2017. Automated Analysis of Unregistered Multi-View Mammograms with Deep Learning. IEEE Trans Med Imaging. 36: 2355–2365
  • Carvalho TP, Soares FAAMN, Vita R, Francisco RP, Basto JP, Alcalá SGS. 2019. A systematic literature review of machine learning methods applied to predictive maintenance. Comput Ind Eng. 137:106024. doi:10.1016/j.cie.2019.106024.
  • Chandrashekar G, Sahin F. 2014. A survey on feature selection methods. Comput Electr Eng. 40:16–28. doi:10.1016/j.compeleceng.2013.11.024.
  • Chang R-F., Wu W-J., Moon WK, Chen D-R.. 2003. Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound in Medicine & Biology. 29:679–686 5 doi:10.1016/S0301-5629(02)00788-3
  • Chang RF, Wu WJ, Moon WK, Chou YH, Chen DR. 2003. Support vector machines for diagnosis of breast tumors on US images. Acad Radiol. 10: 189–197
  • Chaurasia V, Pal S. 2014. Data Mining Techniques : To Predict and Resolve Breast Cancer Survivability. Int J Comput Sci Mob Comput. 3:10–22
  • Chen DR, Kuo WJ, Chang RF, Moon WK, Lee CC. 2002. Use of the bootstrap technique with small training sets for computer-aided diagnosis in breast ultrasound. Ultrasound Med Biol. 28: 897–902
  • Chen HL, Yang B, Liu J, Liu DY. 2011. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl [Internet]. 38:9014–9022. Available from: http://dx.doi.org/10.1016/j.eswa.2011.01.120
  • Chen MC, Liao HC, Huang CL. 2007. Predicting breast tumor via mining DNA viruses with decision tree. Conf Proc - IEEE Int Conf Syst Man Cybern. 5: 3585–3589
  • Chen Y, Huang Q. 2016. An approach based on biclustering and neural network for classification of lesions in breast ultrasound. ICARM 2016–2016 Int Conf Adv Robot Mechatronics. :597–601. doi:10.1109/ICARM.2016.7606988
  • Chen Z, Menzies T, Port D, Boehm B. Feature Subset Selection Can Improve Software Cost Estimation Accuracy. ACM SIGSOFT Software Engineering Notes. 2005;30(4):1–6.
  • Chidambaranathan S. 2014. Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst Appl [Internet]. 41:1476–1482. Available from: http://dx.doi.org/10.1016/j .eswa.2013.08.044
  • Chou S-M., Lee T-S., Shao YE, Chen I-F.. 2004. Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications. 27:133–142 1 10.1016/j.eswa.2003.12.013
  • Christoyianni I, Dermatas E, Kokkinakis G. 2000. Fast detection of masses in computer-aided mammography. IEEE Signal Process Mag . 17:54–64 1 doi:10.1109/79.814646
  • Christoyianni I, Koutras A, Dermatas E, Kokkinakis G. 2002. Computer aided diagnosis of breast cancer in digitized mammograms. Computerized Medical Imaging and Graphics. 26:309–319 5 doi:10.1016/S0895-6111(02)00031-9
  • Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F. 2020. Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustain. 12:492. doi:10.3390/su12020492.
  • Collobert R, Bengio S 2004. Links between perceptrons, MLPs and SVMs. Twenty-first Int Conf Mach Learn - ICML ’04 [Internet].:23: http://portal.acm.org/citation.cfm?doid=1015330.1015415
  • Cordeiro FR, Santos WP, Silva-Filho AG. 2016. A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images. Expert Syst Appl [Internet]. 65:116–126. Available from: http://dx.doi.org/10.1016/j.eswa.2016.08.016
  • Cruz-Ramírez N, Acosta-Mesa HG, Carrillo-Calvet H, Alonso Nava-Fernández L, Barrientos-Martínez RE. 2007. Diagnosis of breast cancer using Bayesian networks: A case study. Computers in Biology and Medicine. 37:1553–1564 11 doi:10.1016/j.compbiomed.2007.02.003
  • Cruz-Ramírez N, Acosta-Mesa H-G., Carrillo-Calvet H, Barrientos-Martínez R-E.. 2009. Discovering interobserver variability in the cytodiagnosis of breast cancer using decision trees and Bayesian networks. Appl Soft Comput J. 9: 9: 91331–1342. doi:10.1016/j.asoc.2009.05.004 4
  • Cruz-Ramírez N, Mezura-Montes E, Ameca-Alducin MY, Martín-Del-Campo-Mena E, Acosta-Mesa HG, Pérez-Castro N, Guerra-Hernández A, Hoyos-Rivera G de J, Barrientos-Martínez RE. 2013. Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers. Comput Math Methods Med. 2013:1–10
  • D S, Aarthypoornila A. 2018. Performance analysis of various classifiers on deep learning network for breast cancer detection.In: Proc IEEE Int Conf Signal Process Commun ICSPC 2017. Vol. 2018-Janua. coimbatore, india; p. 359–363
  • Danala G, Aghaei F, Heidari M, Wu T, Patel B, Zheng B. Computer-aided classification of breast masses using contrast-enhanced digital mammograms. Med Imaging 2018 Comput Diagnosis [Internet]. 2018;10575:91. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10575/2293136/Computer-aided-classification-of-breast-masses-using-contrast-enhanced-digital/10.1117/12.2293136.full.
  • Das A, Halder A, Samaddar S. 2017. Analysis of Behavioral Patterns of Different Intelligent Agents. In: 2017 Int Conf Energy, Commun Data Anal Soft Comput. Chennai, Tamil Nadu, India: IEEE; p. 439–442
  • Soares Sérvulo de Oliveira F, Oseas de Carvalho Filho A, Corrêa Silva A, Cardoso de Paiva A, Gattass M. 2014. Classification of breast regions as mass and non-mass based on digital mammograms using taxonomic indexes and SVM. Computers in Biology and Medicine. 57:42–53 doi:10.1016/j.compbiomed.2014.11.016
  • de Sampaio WB, Fernando Soares Sérvulo. de Oliveira, de Carvalho Filho AO, Silva AC, de Paiva AC, Gattass M. 2018. Classification of breast tissues into mass and non-mass by means of the micro-genetic algorithm, phylogenetic trees, LBP and SVM. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 6:315–330 3 doi:10.1080/21681163.2016.1240630
  • Deepika V, Mishra N. 2017. Analysis and Prediction of Breast cancer and Diabetes disease datasets using Data mining classification Techniques. In: 2017 Int Conf Intell Sustain Syst. Tirupur, India: IEEE; p. 533–538
  • Dinakaran K, Sivakrithika V. 2013. A study on mammography computer aided diagnosis system using machine learning methods. In: IET Chennai Fourth Int Conf Sustain Energy Intell Syst (SEISCON 2013). Chennai; p. 333–341 doi:10.1049/ic.2013.0334
  • Du G, Su F, Cai A. Face recognition using SURF features [Internet]. International Journal of Electronics Engineering Research. 2009;8:749628. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.832636.
  • El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. 2002. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging. 21:1552–1563 12 doi:10.1109/TMI.2002.806569
  • Elsayad AM. 2010. Predicting the severity of breast masses with ensemble of Bayesian classifiers. Journal of Computer Science. 6:576–584 5 doi:10.3844/jcssp.2010.576.584
  • Esfandiari N, Babavalian MR, Moghadam AME, Tabar VK. Knowledge discovery in medicine: current issue and future trend. Expert Syst Appl [Internet]. 2014;41:4434–4463. http://dx.doi.10.1016/j.eswa.2014.01.011.
  • Fallahi A, Jafari S. 2011. An Expert System for Detection of Breast Cancer Using Data Preprocessing and Bayesian Network. Int J Adv Sci Technol. 34:65–70
  • Flores BA, Gonzalez JA, Erro LE. 2004. Data Mining with Decision Trees and Neural Networks for Calcification Detection in Mammograms. In: Mex Int Conf Artif Intell. Cancún, Mexico; p. 232–233
  • Gardezi Syed Jamal Safdar., Faye I, Sanchez Bornot JM, Kamel N, Hussain M. 2018. Mammogram classification using dynamic time warping. Multimed Tools Appl. 77:3941–3962 3 doi:10.1007/s11042-016-4328-8
  • Gauthier E, Brisson L, Lenka P, Ragusa S. 2011. Breast cancer risk score: a data mining approach to improve readability. In: Int Conf Data Min. Las Vegas, United States; p. 15–21
  • Gerazov B, Conceicao RC. 2017. Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. In: 17th IEEE Int Conf Smart Technol EUROCON 2017 - Conf Proc. Ohrid, North Macedonia; p. 564–569 doi:10.1109/EUROCON.2017.8011175
  • Ghany Kareem Kamal A., Ayeldeen H, Zawbaa HM, Shaker O, Ayeldeen G. 2017. Diagnosis of breast cancer using secured classifiers. In: 2017 Int Conf Electr Comput Technol Appl ICECTA 2017. AURAK, UAE; p. 1–5 doi:10.1109/ICECTA.2017.8251947
  • Ghongade RD, Wakde DG. 2017. Detection and classification of breast cancer from digital mammograms using RF and RF-ELM algorithm. In: 2017 1st Int Conf Electron Mater Eng Nano-Technology. Kolkata, India
  • Golnaraghi F, Grewal PK. 2014. Pilot study: electrical impedance based tissue classification using support vector machine classifier. IET Science, Measurement & Technology. 8:579–587 6 doi:10.1049/iet-smt.2013.0087
  • Gouda S, Arab A, Zeid M. 2016. Experimental comparison of classifiers for breast cancer diagnosis. In: Comput Eng Syst (ICCES), 2012 Seventh Int Conf. [place unknown]; p. 180–185. 10.1109/ICCES.2012.6408508
  • Gubern-Mérida A, Martí R, Melendez J, Hauth JL, Mann RM, Karssemeijer N, Platel B. 2015. Automated localization of breast cancer in DCE-MRI. Med Image Anal [Internet]. 20: 20: 20265–274. Available from: http://dx.doi.org/10.1016/j..Medical Image Analysis.2014 2014 20.12 1.00 doi:10.1016/j.media.2014.12.001
  • Guerra-Hernández A, Hoyos-Rivera G de J, Barrientos-Martínez RE. 2013. Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers. Comput Math Methods Med [Internet]. 2013:1–10. doi:10.1155/2013/264246
  • Higgins JPT, Green S. Julian H, editor. Cochrane Handbook for systematic reviews of interventions version. [place unknown]: The Cochrane Collaboration;2011. http://handbook.cochrane.org/.
  • Hilal AR, Basir O. 2009. Combination of enhanced adaboosting techniques for the characterization of breast cancer tumors. FBIE 2009–2009 Int Conf Futur Biomed Inf Eng.:568–571. doi:10.1109/FBIE.2009.5405794
  • Huang CL, Liao HC, Chen MC. 2008. Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Syst Appl. 34: 578–587
  • Huang MW, Chen CW, Lin WC, Ke SW, Tsai CF. 2017. SVM and SVM ensembles in breast cancer prediction. PLoS One. 12: 1–14
  • Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics. [Internet]. 2018;15:41–51. [cited 2019 Jan 18]. http://www.ncbi.nlm.nih.gov/pubmed/29275361.
  • Huang Y.-L., Chen D.-R., Jiang Y.-R., Kuo S.-J., Wu H.-K., Moon WK. 2008. Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol. 32:565–572 4 doi:10.1002/uog.v32:4
  • Idri A, Amazal FA, Abran A. Analogy-based software development effort estimation: A systematic mapping and review. Inf Softw Technol. 2015;58:206–230. [Internet]. doi:10.1016/j.infsof.2014.07.013.
  • Idri A, Chlioui I, Ouassif EL . 2018. A systematic map of data analytics in breast cancer. In: ACM Int Conf Proceeding Ser [Internet], Brisbane, Australia. New York (USA): Association for Computing Machinery; cited 2020 Jul 27; p. 1–10. http://dl.acm.org/citation.cfm?doid=3167918.3167930
  • Idri A, Khoshgoftaar T, Abran A. Can neural networks be easily interpreted in software cost estimation? 2002 IEEE World Congr Comput Intell 2002 IEEE Int Conf Fuzzy Syst FUZZ-IEEE’02 Proc (Cat No02CH37291) [Internet]. 2003;2:1162–1167. http://ieeexplore.ieee.org/document/1006668/.
  • Idrissi EL, Idri A, Bakkoury Z. 2019. Systematic map and review of predictive techniques in diabetes self-management. Int J Inf Manage. 46:263–277. doi:10.1016/j.ijinfomgt.2018.09.011.
  • Inan O, Uzer MS, Yilmaz N. A new hybrid feature selection method based on association rules and pca for detection of breast cancer. Int J Innov Comput Inf Control. 2013;9:727–729.
  • Jafari-Marandi R, Davarzani S, Soltanpour Gharibdousti M, Smith BK. 2018. An optimum ANN-based breast cancer diagnosis: Bridging gaps between ANN learning and decision-making goals. Applied Soft Computing. 72:108–120 doi:10.1016/j.asoc.2018.07.060
  • Jain R, Abraham A. 2004. A comparative study of fuzzy classification methods on breast cancer data. Australas Phys Eng Sci Med. 27:213–218 4 doi:10.1007/BF03178651
  • JESMIN, N, YI-PING, PC. 2007. KERNEL-BASED NAIVE BAYES CLASSIFIER FOR BREAST CANCER PREDICTION [Internet]. 15:17–25. Available from: http://predictcancer.org/Main.php?page=Home
  • Jiji GW, Marsilin JR. 2015. Localization of tumor and its stage using intelligent techniques. Applied Soft Computing. 27:468–473 doi:10.1016/j.asoc.2014.10.012
  • Jitaree S, Windeatt T, Boonyapiphat P, Phukpattaranont P. 2017. Classifying Breast Cancer Microscopic Images using Fractal Dimension and Ensemble Classifier. In: 2017 Biomed Eng Int Conf Classifying. Hokkaido, Japan; p. 3–7 doi:10.1109/BMEiCON.2017.8229111
  • Joo S, Moon WK, Kim HC. 2004. Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network. In: Conf Proc IEEE Eng Med Biol Soc. Vol. 2. San Francisco; p. 1397–1400
  • Joo S, Yang Y.S., Moon W.K., Kim H.C.. 2004. Computer-Aided Diagnosis of Solid Breast Nodules: Use of an Artificial Neural Network Based on Multiple Sonographic Features. IEEE Trans Med Imaging. 23:1292–1300 10 doi:10.1109/TMI.2004.834617
  • Journal Citation Reports. 2018. cited 2018 Dec 18. https://www.thomsonreuters.com/journalcitation-reports/
  • Journal I, Science C 2013. Class Imbalance Problem in Data Mining : review. 2.
  • Kadi I, Idri A, Fernandez-Aleman JL. Knowledge discovery in cardiology: A systematic literature review. Int J Med Inform [Internet]. 2017;97:12–32. doi:10.1016/j.ijmedinf.2016.09.005.
  • Kala R, Janghel RR, Tiwari R, Shukla A. 2011. Diagnosis of breast cancer by modular evolutionary neural networks. International Journal of Biomedical Engineering and Technology. 7:194 2 doi:10.1504/IJBET.2011.043179
  • Karabatak M, Ince MC. 2009. An expert system for detection of breast cancer based on association rules and neural network. Expert Systems with Applications. 36:3465–3469 2 doi:10.1016/j.eswa.2008.02.064
  • Karthik S, Srinivasa Perumal R, Chandra Mouli PVSSR. 2018. Breast Cancer Classification Using Deep Neural Networks. In: Knowl Comput Its Appl [Internet]. Singapore: Springer Singapore; [cited 2018 Dec 19]; p. 227–241. Available from: http://link.springer.com/10.1007/978-981-10-6680-1_12
  • Kaushik D, Kaur K. 2016. Application of Data Mining for high accuracy prediction of breast tissue biopsy results. 2016 3rd Int Conf Digit Inf Process Data Mining, Wirel Commun DIPDMWC 2016.:40–45 doi:10.1109/DIPDMWC.2016.7529361
  • Khalilabad ND, Hassanpour H, Abbaszadegan MR. 2016. Fully automatic classification of breast cancer microarray images. J Electr Syst Inf Technol [Internet]. 3:348–359. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2314717216300393
  • Kitchenham BA, Budgen D, Pearl Brereton O. Using mapping studies as the basis for further research - A participant-observer case study. Inf Softw Technol [Internet]. 2011;53:638–651. http://dx.doi.10.1016/j.infsof.2010.12.011.
  • Kofod-petersen A 2014. How to do a structured literature review in computer science. Researchgate.:1–7.
  • Kumar G, Ramachandra G, Nagamani K. 2013. An Efficient Prediction of Breast Cancer Data using Data Mining Techniques. IjietCom [Internet]. 2:139–144. Available from: http://ijiet.com/wp-content/uploads/2013/09/18.pdf
  • Kumar UK, Nikhil MBS, Sumangali K. 2017. Prediction of breast cancer using voting classifier technique.In: 2017 IEEE Int Conf Smart Technol Manag Comput Commun Control Energy Mater ICSTM 2017 - Proc. Oklahoma; p. 108–114 10.1109/ICSTM.2017.8089135
  • Kumar V, Mohanty F, Dash B, Rup S. 2018. A hybrid computer-aided diagnosis system for abnormality detection in mammograms. In: RTEICT 2017-2nd IEEE Int Conf Recent Trends Electron Inf Commun Technol Proc. Bangalore; p. 496–500 doi:10.1109/RTEICT.2017.8256646
  • Kuncheva LI. Combining Pattern Classifiers [Internet]. Hoboken (NJ, USA):John Wiley & Sons, Inc.;2014. [cited 2019 Feb 12]. http://doi.wiley.com/10.1002/9781118914564.
  • Kuo WJ, Chang RF, Moon WK, Lee CC, Chen DR. 2002. Computer-aided diagnosis of breast tumors with different US systems. Acad Radiol. 9:793–799. doi:10.1016/S1076-6332(03)80349-5
  • Lavanya D. Ensemble Decision Tree Classifier For Breast Cancer Data. Int J Inf Technol Converg Serv [Internet]. 2012;2:17–24. http://www.airccse.org/journal/ijitcs/papers/0212ijitcs03.pdf.
  • Lavanya D, Usha Rani K. 2012. Ensemble decision making system for breast cancer data. International Journal of Computer Applications. 51:975–8887 17 10.5120/8134-1823
  • Levman J, Martel AL. 2010. Computer-aided diagnosis of breast cancer from magnetic resonance imaging examinations by custom radial basis function vector machine. In: 2010 Annu Int Conf IEEE Eng Med Biol [Internet]. Buenos Aires; p. 5577–5580. Available from: http://ieeexplore.ieee.org/document/5626792/ 10.1109/IEMBS.2010.5626792
  • Liang C, Bian Z, Lv W, Chen S, Zeng D, Ma J. 2018. A computer-aided diagnosis scheme of breast lesion classification using GLGLM and shape features: Combined-view and multi-classifiers. Phys Medica [Internet]. [cited 2018 Dec 19]; 55: 55: 5561–72. Available from: https://www.sciencedirect.com/science/article/pii/S112017971831302 doi:10.1016/j.ejmp.2018.10.016
  • Lin GS, Chang YC, Yeh WC, Liu KC, Yeh CH. 2012. Detecting masses in digital mammograms based on texture analysis and neural classifier. Proc - 3rd Int Conf Inf Secur Intell Control ISIC. Dearborn .2012.:222–225
  • Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J. 2010. Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recognition. 43:280–298 1 doi:10.1016/j.patcog.2009.06.002
  • Liu HX, Zhang RS, Luan F, Yao XJ, Liu MC, Hu ZD, Fan BT. 2003. Diagnosing breast cancer based on support vector machines. J Chem Inf Comput Sci. 43: 900–907
  • Lu W, Li Z, Chu J. 2017. A novel computer-aided diagnosis system for breast MRI based on feature selection and ensemble learning. Computers in Biology and Medicine . 83:157–165 doi:10.1016/j.compbiomed.2017.03.002
  • Luo S-T., Cheng B-W.. 2012. Diagnosing breast masses in digital mammography using feature selection and ensemble methods. J Med Syst. 36:569–577 2 doi:10.1007/s10916-010-9518-8
  • machine-learning-databases/breast-cancer-wisconsin. 2018. cited 2019 Mar 18. https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
  • Madeira SC, Oliveira AL. 2004. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans Comput Biol Bioinforma. 1:24–45. doi:10.1109/TCBB.2004.2.
  • Mahersia H, Boulehmi H, Hamrouni K. 2016. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis. Computer Methods and Programs in Biomedicine. 126:46–62 doi:10.1016/j.cmpb.2015.10.017
  • Maji P, Paul S 2014. Scalable pattern recognition algorithms : applications in computational biology and bioinformatics. [place unknown].
  • Makandar A, Halalli B. 2017. Classification of mass type based on segmentation techniques with support vector machine model for diagnosis of breast cancer. In: 2017 Int Conf Data Manag Anal Innov ICDMAI 2017. Pune; p. 81–86 doi:10.1109/ICDMAI.2017.8073490
  • Mammographic Mass Data Set. 2018. cited 2019 Mar 18. http://archive.ics.uci.edu/ml/datasets/mammographic+mass
  • Menolascina F, Tommasi S, Paradiso A, Cortellino M, Bevilacqua V, Mastronardi G 2007. Novel Data Mining Techniques in aCGH based Breast Cancer Subtypes Profiling: the Biological Perspective. 2007 IEEE Symp Comput Intell Bioinforma Comput Biol [Internet].:9–16. Honolulu. http://ieeexplore.ieee.org/document/4221198/
  • Meselhy Eltoukhy M, Faye I, Belhaouari Samir B. 2012. A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Comput Biol Med [Internet]. 42:123–128. Available from: http://dx.doi.org/10.1016/j.compbiomed.2011.10.016
  • Miaomiao L, Lican H, Ahmad W. 2017. Breast Cancer Intelligent Diagnosis Based on Subtractive Clustering Adaptive Neural Fuzzy Inference System and Information Gain. In: 2017 Int Conf Comput Syst Electron Control. Dalian, China; p. 911–915
  • MIAS database of mammograms. 2018. cited 2019 Mar 18. http://peipa.essex.ac.uk/info/mias.html
  • Milosevic M, Jovanovic Z, Jankovic D. 2017. A comparison of methods for three-class mammograms classification. Technol Heal Care. 25:657–670. doi:10.3233/THC-160805.
  • Mishra BK, Singh SK, Bhala S 2011. Breast cancer diagnosis using back-propagation algorithm. Proc Int Conf Work Emerg Trends Technol - ICWET ’11 [Internet].:470. Maharashtra, Mumbai. http://portal.acm.org/citation.cfm?doid=1980022.1980123
  • Moayedi F, Boostani R, Azimifar Z, Katebi S. 2007. A support vector based fuzzy neural network approach for mass classification in mammography. 2007 15th Int Conf Digit Signal Process DSP 2007.:240–243. doi:10.1109/ICDSP.2007.4288563
  • Mohanty AK, Lenka SK. 2010. Efficient image mining technique for classification of mammograms to detect breast cancer. Ijcct. 2:99–106
  • Mookiaha MRK, Acharyaa UR, Ng EYK. 2012. Data mining technique for breast cancer detection in thermograms using hybrid feature extraction strategy. Quant Infrared Thermogr J. 9:151–165. doi:10.1080/17686733.2012.738788.
  • Mousa R, Munib Q, Moussa A. 2005. Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural. Expert Systems with Applications. 28:713–723 4 doi:10.1016/j.eswa.2004.12.028
  • Mughal B, Sharif M, Muhammad N. 2017. Bi-model processing for early detection of breast tumor in CAD system. Eur Phys J Plus. 132 6 132 doi:10.1140/epjp/i2017-11523-8
  • Mughal B, Sharif M, Muhammad N, Saba T. 2018. A novel classification scheme to decline the mortality rate among women due to breast tumor. Microsc Res Tech [Internet]. [cited 2018 Dec 19]; 81:171–180. Available from: http://doi.wiley.com/10.1002/jemt.22961
  • Nahar J, Imam T, Tickle KS, Shawkat Ali ABM, Chen YPP. 2012. Computational intelligence for microarray data and biomedical image analysis for the early diagnosis of breast cancer. Expert Syst Appl [Internet]. 39:12371–12377. Available from: http://dx.doi.org/10.1016/j.eswa2012.04.045
  • Nahar J, Tickle KS, Ali ABMS, Chen Yi-Ping Phoebe.. 2009. Early breast cancer identification: Which way to go? Microarray or image based computer aided diagnosis! In: 2009 Third Int Conf Netw Syst Secur. [place unknown]; p. 456–461. doi:10.1109/NSS.2009.75
  • Newell D, Nie K, Chen JH, Hsu CC, Yu HJ, Nalcioglu O, Su MY. 2010. Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: Differences in lesions presenting as mass and non-mass-like enhancement. Eur Radiol. 20: 771–781
  • Ngai EWT, Hu Y, Wong YH, Chen Y, Sun X. 2011. The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decis Support Syst [Internet]. 2011;50:559–569. doi:10.1016/j.dss.2010.08.006.
  • Ngayarkanni SP, Kamal NB, Thavavel V. 2012. Automatic detection and classification of cancerous masses in mammogram. In: 2012 Third Int Conf Comput Commun Netw Technol [Internet]. Coimbatore, India; p. 1–10. Available from: http://ieeexplore.ieee.org/document/6395998/ doi:10.1109/ICCCNT.2012.6395998
  • Odajima K, Pawlovsky AP. 2014. A detailed description of the use of the kNN method for breast cancer diagnosis. A detailed description of the use of the kNN method for breast cancer diagnosis. Proc - 2014 7th Int Conf Biomed Eng Informatics, BMEI 2014. 1:688–692. doi:10.1109/BMEI.2014.7002861.
  • Olson DL, Delen D 2008. Advanced Data Mining Techniques. [place unknown].
  • Oskouei RJ, Kor NM, Maleki SA. Data mining and medical world: breast cancers’ diagnosis, treatment, prognosis and challenges. Am J Cancer Res [Internet]. 2017;7:610–627. [cited 2019 Jan 16]. http://www.ncbi.nlm.nih.gov/pubmed/28401016.
  • Ouhbi S, Idri A, Fernández-Alemán JL, Toval A. 2015. Requirements engineering education: a systematic mapping study. Requir Eng. 20:119–138. doi:10.1007/s00766-013-0192-5.
  • Pandey B, Jain T, Kothari V, Grover T. 2012. Evolutionary Modular Neural Network Approach for Breast Cancer Diagnosis. IJCSI Int J Comput Sci Issues. 9:219–225
  • Patrocinio AC, Schiabel H. 2001. Classifying clusters of microcalcifications in digitized mammograms by artificial neural network. Brazilian Symp Comput Graph Image Process. 2001-Janua:266–272
  • Paulin F, Santhakumaran A. 2011. Classification of Breast cancer by comparing Back propagation training algorithms. Int J Comput Sci Eng [Internet]. 3:327-332. Available from: http://www.enggjournals.com/ijcse/doc/IJCSE11-03-01-058.pdf
  • Perrone MP, Cooper LN. When networks disagree: ensemble methods for hybrid neural networks [Internet]. World Scientific Series in 20th Century Physics. 1995. 342–358. http://www.worldscientific.com/doi/abs/10.1142/9789812795885_0025.
  • Polat K, Güneş S. 2007. Breast cancer diagnosis using least square support vector machine. Digital Signal Processing. 17:694–701 4 doi:10.1016/j.dsp.2006.10.008
  • Ponce H, De Lourdes Martinez-Villasenor M. Interpretability of artificial hydrocarbon networks for breast cancer classification. Proc Int Jt Conf Neural Networks, Anchorage, AK. 2017-May:3535–3542.
  • Prati RC, Batista GEAPA, Monard MC. 2011. A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng. 23:1601–1618. doi:10.1109/TKDE.2011.59.
  • Quackenbush J. 2001. Computational analysis of microarray data. Nat Rev Genet. 2:418–427. doi:10.1038/35076576.
  • Radovic M, Djokovic M, Peulic A, Filipovic N 2013. Application of data mining algorithms for mammogram classification. 13th IEEE Int Conf Bioinforma Bioeng IEEE BIBE:0–3. Chania, Greece.
  • Rahimeh R, Mehdi J, Shohreh K, Peiman K. Benign and malignant breast tumors classification based on region growing and CNN segmentation. PLoS One [Internet]. 2014;8. http://dx.doi.10.1016/j.eswa.2014.09.020.
  • Ramos-Pollán R, Guevara-López MA, Suárez-Ortega C, Díaz-Herrero G, Franco-Valiente JM, Rubio-Del-Solar M, González-De-Posada N, Vaz Mario Augusto Pires., Loureiro J, Ramos I. 2012. Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst. 36:2259–2269 4 doi:10.1007/s10916-011-9693-2
  • Rasti R, Teshnehlab M, Phung SL. 2017. Breast cancer diagnosis in DCE-MRI using mixture ensemble of convolutional neural networks. Pattern Recognit. 72: 381–390
  • Raza M, Gondal I, Green D, Coppel RL. 2006. Classifier Fusion Using Dempster-Shafer theory of evidence to Predict Breast Cancer Tumors. Bioinformation [Internet]. 1: 1: 1170–175. Available from: http://www.bioinformation.net/001/004600012006.htm 5 doi:10.6026/bioinformation
  • Razavi AR, Gill H, Åhlfeldt H, Shahsavar N. 2007. Predicting metastasis in breast cancer: Comparing a decision tree with domain experts. J Med Syst. 31: 263–273
  • Road H, Fund C, Health N, Office Q. Breast cancer and breastfeeding: results from an Australian case-control study. American Journal of Epidemiology 2018;130. 229–236.
  • Rodrigues PS, Giraldi GA, Provenzano M, Faria MD, Chang R-F., Suri JS. 2006.A new methodology based on q-entropy for breast lesion classification in 3-D ultrasound images. In: Annu Int Conf IEEE Eng Med Biol - Proc. New York, USA; p. 1048–1051 doi:10.1109/IEMBS.2006.259221
  • Ryu YU, Chandrasekaran R, Jacob VS. 2007.Breast cancer prediction using the isotonic separation technique. Eur J Oper Res. 181: 842–854
  • Sahiner B, Chan HP, Petrick N, Wagner RF, Hadjiiski L. 2000. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Med Phys. 27:1509–1522. doi:10.1118/1.599017.
  • Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. 1996. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 15: 598–610
  • Salama G, Abdelhalim, M MZ. 2012. Breast cancer diagnosis on three different datasets using multi-classifiers. Int J Comput Inf Technol (2277 – 0764) Vol 01– Issue 01, Sept 2012
  • Salem H, Attiya G, El-Fishawy N. 2017. Early diagnosis of breast cancer by gene expression profiles. Pattern Analysis and Applications. 20:567–578 2 doi:10.1007/s10044-016-0574-7
  • Samina K, Tehmina K, Nasreen S 2014. A survey of feature selection and feature extraction techniques in machine learning. Proc 2014 Sci Inf Conf SAI.:372–378. London, UK.
  • Saraswathi D, Srinivasan E. 2017. Performance analysis of mammogram CAD system using SVM and KNN classifier. In: Proc Int Conf Inven Syst Control ICISC 2017. Coimbatore, India.; p. 1–5 doi:10.1109/ICISC.2017.8068653
  • Saritas I, Koklu M, Tutuncu K. Performance of Classification Techniques on Medical Datasets. Int J Adv Sci Eng Technol. 2017;5:9–13.
  • Sarkar M, Leong TY 2000. Application of K-nearest neighbors algorithm on breast cancer diagnosis problem. Proc AMIA Annu Symp Am Med Informatics Assoc.:759–763. San Antonio.
  • Sawarkar SD, Ghatol AA, Pande AP. 2006. Neural Network Aided Breast Cancer Detection and Diagnosis Using Support Vector Machine. In: Proc 7th WSEAS Int Conf Neural Networks, Cavtat, Croat. Wisconsin, United States; p. 158–163
  • Saybani MR, Wah TY, Aghabozorgi SR, Shamshirband S, Mat Kiah ML, Balas VE. 2016. Diagnosing breast cancer with an improved artificial immune recognition system. Soft Comput. 20:4069–4084 10 doi:10.1007/s00500-015-1742-1
  • Sedighiani K, HashemiKhabir S. Constructing Interpretable Genetic Fuzzy Rule-Based System for Breast Cancer Diagnostic. Constructing interpretable genetic fuzzy rule-based system for Breast Cancer Diagnostic. Proc 2009 WRI Glob Congr Intell Syst GCIS 2009. 1:441–446 doi:10.1109/gcis15262.2009
  • Selvaraj D, Dhanasekaran R. A Review on Tissue Segmentation and Feature Extraction of MRI Brain images. Int J Comput Sci Eng Technol [Internet]. 2013;4:1313–1332. http://ijcset.com/docs/IJCSET13-04-10-038.pdf.
  • Selvathi D, Aarthypoornila A. 2018. Performance analysis of various classifiers on deep learning network for breast cancer detection. In: Proc IEEE Int Conf Signal Process Commun ICSPC 2017. Vol. 2018-Janua. coimbatore, india; p. 359–363 doi:10.1109/CSPC.2017.8305869
  • Senturk ZK, Kara R. 2014. Breast Cancer Diagnosis Via Data Mining: Performance Analysis of Seven Different Algorithms. Computer Science & Engineering: An International Journal. 4:35–46 1 doi:10.5121/cseij
  • Shah C, Jivani AG 2013. Comparison of data mining classification algorithms for breast cancer prediction. 4th Int Conf Comput Commun Netw Technol ICCCNT 2013.:4–7. Tiruchengode.
  • Shahnaz C, Hossain J, Fattah SA, Ghosh S, Khan AI. 2018. Efficient approaches for accuracy improvement of breast cancer classification using Wisconsin database. In: 5th IEEE Reg 10 Humanit Technol Conf 2017, R10-HTC 2017. Dhaka, Bangladesh; p. 792–797
  • Shajahaan SS, Shanthi S, Manochitra V. 2013. Application of Data Mining Techniques to Model Breast Cancer Data. Int J Emerg Technol Adv Eng. 3:1–8
  • Sharma A, Kulshrestha S, Daniel S. 2018. Machine learning approaches for breast cancer diagnosis and prognosis. In: 2017 Int Conf Soft Comput its Eng Appl Harnessing Soft Comput Tech Smart Better World, icSoftComp 2017. Vol. 2018-Janua. Changa, India; p. 1–5
  • Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res [Internet]. 2020;119:104926. [cited 2020 May 12] . https://linkinghub.elsevier.com/retrieve/pii/S0305054820300435.
  • Sharma S. Performance of Various Machine Learning Classifiers on Small Datasets with Varying Dimensionalities: A Study. Circulation in Computer Science. 2016;1. 30–35.
  • Sharma V, Singh S. 2014. CFS-SMO based classification of breast density using multiple texture models. Med Biol Eng Comput. 52:521–529 6 doi:10.1007/s11517-014-1158-6
  • Shen R, Yang Y, Shao F. Intelligent Breast Cancer Prediction Model Using Data Mining Techniques. Intelligent breast cancer prediction model using data mining techniques. Proc - 2014 6th Int Conf Intell Human-Machine Syst Cybern IHMSC 2014. 1:384–387 doi:10.1109/IHMSC.2014.100
  • Shi X, Cheng HD, Hu L, Ju W, Tian J. 2010.Detection and classification of masses in breast ultrasound images. Digit Signal Process A Rev J [Internet]. 20: 20: 20824–836. Available from: http://dx.doi.org/10.1016/j.dsp.2010.10.010 3 10.1016/j.dsp.2009.10.010
  • Sirisomboonrat C, Sinapiromsaran K. 2012. Breast cancer diagnosis using multi-attributed lens recursive partitioning algorithm. Int Conf ICT Knowl Eng. Bangkok, Thailand.:40–45. doi:10.1109/ICTKE.2012.6408569
  • Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manag [Internet]. 2009;45:427–437. http://dx.doi.10.1016/j.ipm.2009.03.002.
  • Sonar P, Bhosle U, Choudhury C. 2018. Mammography classification using modified hybrid SVM-KNN. In: Proc IEEE Int Conf Signal Process Commun ICSPC 2017. Vol. 2018-Janua. Piscataway, New Jersey]; p. 305–311 doi:10.1109/CSPC.2017.8305858
  • Soria D, Garibaldi JM, Biganzoli E, Ellis IO. A comparison of three different methods for classification of breast cancer data. Proc - 7th Int Conf Mach Learn Appl ICMLA. 2008. 619–624.
  • Subashini TS, Ramalingam V, Palanivel S. 2009. Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst Appl [Internet]. 36: 36: 365284–5290. Available from: http://dx.doi.org/10.1016/j .Expert Systems with Applications.2008 2008 36.06 3.127 doi:10.1016/j.eswa.2008.06.127
  • Subashini TS, Ramalingam V, Palanivel S. 2010. Automated assessment of breast tissue density in digital mammograms. Computer Vision and Image Understanding. 114:33–43 1 doi:10.1016/j.cviu.2009.09.009
  • Sun Y, Kamel MS, Wong AKC, Wang Y. 2007. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40:3358–3378. doi:10.1016/j.patcog.2007.04.009.
  • Swiderski B, Osowski S, Kurek J, Kruk M, Lugowska I, Rutkowski P, Barhoumi W. 2017. Novel methods of image description and ensemble of classifiers in application to mammogram analysis. Expert Systems with Applications. 81:67–78 doi:10.1016/j.eswa.2017.03.031
  • Taghian AG, Smith BL, Erban JK. Breast Cancer: A Multidisciplinary Approach to Diagnosis and Management. Int J Radiat Oncol Biol Phys [Internet]. 2010;78:127. http://dx.doi.10.1016/j.ijrobp.2010.04.053x.
  • Takada M, Sugimoto M, Naito Y, Moon HG, Han W, Noh DY, Kondo M, Kuroi K, Sasano H, Inamoto T, et al. 2012. Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. BMC Med Inform Decis Mak. 12. 10.1186/1472-6947-12-54
  • Tan JMY, Ng EYK, Acharya U. R, Keith LG, Holmes J. 2009. Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data. J Med Syst. 33: 141–153
  • The CORE Conference Ranking Exercise. 2018. cited 2018 Dec 18. http://www.core.edu.au/conference-portal/2018-conference-rankings
  • Tian F, Zhang H, Yuchang L. 2003 Learning Bayesian networks from incomplete data based on EMI method. In: Third IEEE Int Conf Data Min [Internet]. [place unknown]: IEEE Comput. Soc, Melbourne, FL; cited 2019 Jan 18; p. 323–330. http://ieeexplore.ieee.org/document/1250936/
  • Tike Thein HT, Mo Tun KM. An Approach for Breast Cancer Diagnosis Classification Using Neural Network. Adv Comput An Int J [Internet]. 2015;6:1–11. doi:10.5121/acij.2015.6101.
  • Torrents-Barrena J, Puig D, Melendez J, Valls A. 2016. Computer-aided diagnosis of breast cancer via Gabor wavelet bank and binary-class SVM in mammographic images. Journal of Experimental & Theoretical Artificial Intelligence. 28:295–311 1–2 doi:10.1080/0952813X.2015.1024491
  • Tourassi GD, Markey MK, Lo JY, Floyd CE. 2001. A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med Phys. 28:804–811 5 10.1118/1.1367861
  • Treatment. 2019. cited 2018 Dec 17. https://www.nhs.uk/conditions/breast-cancer/treatment/
  • Tripathi AS, Atin M, Mohit D, Manohar K, Oscar CA. 2013.2-SiMDoM : A 2-SIEVE MODEL FOR DETECTION OF MITOSIS IN MULTISPECTRAL BREAST CANCER IMAGERY. In: 2013 20th IEEE Int Conf Image Process. Silicon Valley; p. 611–615
  • Velayutham C, Thangavel K. 2011. Unsupervised feature selection based on the measures of degree of dependency using rough set theory in digital mammogram image classification. 3rd Int Conf Adv Comput ICoAC 2011.:163–168. 10.1109/ICoAC.2011.6165167
  • Venkatesan E, Velmurugan T. 2015. Performance Analysis of Decision Tree Algorithms for Breast Cancer Classification. Indian Journal of Science and Technology. 8:387–393 1 10.17485/IJST
  • Ventura S, Cristobal R. Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics. 2010;40. 601–618.
  • Verma B, McLeod P, Klevansky A. Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst Appl [Internet]. 2010;37:3344–3351. http://dx.doi.10.1016/j.eswa.2009.10.016.
  • Vijayarajan SM, Jaganathan P. 2018.A novel comparative study on breast cancer detection using different types of classification techniques. Concurr Comput Pract Exp [Internet]. [cited 2018 Dec 19]:e4939. Available from: http://doi.wiley.com/10.1002/cpe.4939
  • Vijayarajan SM, Jaganathan P. 2018. A novel comparative study on breast cancer detection using different types of classification techniques. Concurr Comput Pract Exp [Internet]. [cited 2018 Dec 19]:e4939. Available from: http://doi.wiley.com/10.1002/cpe.4939 14 31 doi:10.1002/cpe.v31.14
  • W.-J. K, R.-F. C, D.-R. C, C.C. L. 2001. Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images. Breast Cancer Res Treat [Internet]. 66:51–57. doi:10.1023/A:1010676701382
  • Wahab N, Khan A, Lee YS. 2017.Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput Biol Med. 85: 86–97
  • Wan T, Cao J, Chen J, Qin Z. 2017. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. Neurocomputing [Internet]. 229: 229: 22934–44. Available from: http://dx.doi.org/10.1016/j .Neurocomputing.2016 2016 229.05.084 10.1016/j.neucom.2016.05.084
  • Wang CM, Mai XX, Lin GC, Kuo CT. 2008. Classification for breast MRI using support vector machine. Proc - 8th IEEE Int Conf Comput Inf Technol Work CIT Work 2008.:362–367.
  • WHO | World Health Organization. 2018. cited 2018 Dec 17. https://www.who.int/
  • Why is early diagnosis important? Cancer Research UK. 2018. cited 2018 Dec 17. https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important
  • Żytkow JM, Rauch J, editors. Principles of Data Mining and Knowledge Discovery [Internet]. Berlin (Heidelberg): Springer Berlin Heidelberg. 1999. [cited 2020 May 30]. http://link.springer.com/10.1007/b72280.
  • Übeyli ED. 2007. Implementing automated diagnostic systems for breast cancer detection. Expert Systems with Applications. 33:1054–1062 4 10.1016/j.eswa.2006.08.005
  • Xu W, Li L, Zou S. 2007. Detection and classification of microcalcifications based on DWT and ANFIS. 2007 1st Int Conf Bioinforma Biomed Eng ICBBE.:547–550. 10.1109/ICBBE.2007.143
  • Xu W, Li L, Zou S. 2007.Detection and classification of microcalcifications based on DWT and ANFIS. 2007 1st Int Conf Bioinforma Biomed Eng ICBBE. Wuhan, China.p:547–550 doi:10.1109/ICBBE.2007.143
  • Xu Y, Zhen L, Yang L, Wang L. Classification algorithm based on feature selection and samples selection. In: lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). Vol. 5552 LNCS. [place unknown]: Springer. Berlin: Heidelberg;2009. p. 631–638.
  • Yaffe MJ, Martin J 2001. IWDM 2000 : 5th International Workshop on Digital Mammography : proceedings of the workshop, June 11-14, 2000, Toronto (Canada [Internet]. [place unknown]): Medical Physics Pub, Toronto, Canada; cited 2018 Dec 18 http://www.eng.usf.edu/cvprg/Mammography/Database.html
  • Yun J, Zhanhuai L, Yong W, Longbo Z 2006. A Better Classifier Based on Rough Set and Neural Network for Medical Images. Sixth IEEE Int Conf Data Min - Work [Internet].:853–857. Sydney, Australia. http://ieeexplore.ieee.org/document/4063745/
  • Zarbakhsh P, Addeh A, Demirel H. 2018.Early detection of breast cancer using optimized ANFIS and features selection. In: Proc - 9th Int Conf Comput Intell Commun Networks, CICN 2017. Vol. 2018-Janua. Chypre; p. 39–42
  • Zhou J, Zhong T, He X. 2017.Auxiliary diagnosis of breast tumor based on pnn classifier optimized by PCA and PSO algorithm. In: Proc - 9th Int Conf Intell Human-Machine Syst Cybern IHMSC 2017. Vol. 2. Hangzhou, China; p. 222–227 doi:10.1109/IHMSC.2017.164
  • Zhou Y, Xu J, Liu Q, Li C, Liu Z, Wang M, Zheng H, Wang S. 2018. A radiomics approach with CNN for shear-wave elastography breast tumor classification. IEEE Trans Biomed Eng. 65:1935 –1942 9 doi:10.1109/TBME.10
  • Zhu X-H, Hang Q-M, Xing Z-B, Tang Z-J, Song Y, Zhu J-M, Liu Z-G. 2017. A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks. IEEE J Transl Eng Heal Med. 5:1–11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.