197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Classifying unevenly spaced clinical time series data using forecast error approximation based bottom-up (FeAB) segmented time delay neural network

, &
Pages 92-105 | Received 03 Sep 2018, Accepted 28 Aug 2020, Published online: 21 Dec 2020

References

  • Adlassnig KP, Combi C, Das AK, Keravnou ET, Pozzi G. 2006. Temporal representation and reasoning in medicine: research directions and challenges. Artif Intell Med. 38(2):101–113. doi:10.1016/j.artmed.2006.10.001.
  • Allen JF. 1983. Maintaining knowledge about temporal intervals. Commun ACM. 26(11):832–843. doi:10.1145/182.358434.
  • Batal I, Cooper GF, Fradkin D, Harrison J Jr, Moerchen F, Hauskrecht M. 2016. An efficient pattern mining approach for event detection in multivariate temporal data. Knowl Inf Syst. 46(1):115–150.
  • Batal I, Sacchi L, Bellazzi R, Hauskrecht M (2009). A temporal abstraction framework for classifying clinical temporal data in American Medical Informatics Association, Nov 14.
  • Batal I, Valizadegan H, Gregory FC, Hauskrecht M. 2013. A temporal pattern mining approach for classifying electronic health record data. ACM Trans Intell Syst Technol. 4:4.
  • Bellazzi R, Zupan B. 2008. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 77(2):81–97. doi:10.1016/j.ijmedinf.2006.11.006.
  • Bodyanskiy Y, Kolodyazhniy V, Otto P. 2005. Neuro-fuzzy kolmogorov s network for time series prediction and pattern classification. In Annual Conference on Artificial Intelligence Springer (Berlin, Heidelberg): 191–202.
  • Chakravarty S, Shahar Y (2000). Acquisition and analysis of periodic patterns in time-oriented clinical data, Stanford Medical Informatics, Stanford (CA, USA), SMI–2000–0822.
  • Chan K, Fu AW 1999. Efficient time series matching by wavelets. Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, Australia. 126–133
  • Cipra T, Hanzak T. 2008. Exponential smoothing for irregular time series. Kybernetika. 44:385–399.
  • Cooijmans T, Ballas N, Laurent C, Gülçehre Ç, Courville A. 2016. Recurrent batch normalization [Accessed 2016 Dec 1]. https://arxiv.org/abs/1603.09025.
  • Cooray TMJA. 2008. Applied Time Series: Analysis and Forecasting. Alpha Science International Limited Oxford (UK): [Accessed 2016 Dec 1].
  • Fu TC. 2011. A review on time series data mining. Eng Appl Artif Intell. 24(1):164–181. doi:10.1016/j.engappai.2010.09.007.
  • Hagan MT, Demuth HB, Beale MH. 1996. Neural network design. 2nd ed. Boston (Massachusetts): PWS Publishing.
  • Hagan MT, Menhaj M. 1999. Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw. 5(6):pp. 989–993. doi:10.1109/72.329697.
  • Haimowitz IJ, Kohane IS. 1996. Managing temporal worlds for medical trend diagnosis. Artif Intell Med. 8:299–321. doi:10.1016/0933-3657(95)00037-2.
  • Han J, Kamber M. 2001. Data mining, concepts and techniques, Morgan Kaufmann. 2nd ed. San Francisco: CA.
  • Hepatitis Dataset for Discovery Challenge. European conference on machine learning and principles and practice of knowledge discovery in databases. 16th ECML and 9th PKDD Conference, October 3–10, Porto, Portugal. [Accessed 2006 Jan 1]. http://lisp.vse.cz/challenge/ecmlpkdd2005/.
  • Holt CC. 2004. Forecasting seasonal and trends by exponentially weighted moving averages. Int J Forecast. 20:5–10. doi:10.1016/j.ijforecast.2003.09.015.
  • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning (France):448-4456. http://arxiv.org/abs/1502.03167.
  • Jane YN, Nehemiah HK, Arputharaj K. 2016a. A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson s disease. J Biomed Inform. 60:169–176. doi:10.1016/j.jbi.2016.01.014.
  • Jane YN, Nehemiah HK, Arputharaj K. 2016b. A temporal mining framework for classifying un-evenly spaced clinical data. Appl Clin Inform. 17(1):1–21. doi:10.4338/ACI-2015-08-RA-0102.
  • Jane YN, Nehemiah HK, Arputharaj K. 2017. A bio-statistical mining approach for classifying multivariate clinical time series data observed at irregular intervals. Expert Syst Appl. 78:283–300. doi:10.1016/j.eswa.2017.01.056.
  • Jensen S. 2001. Mining medical data for predictive and sequential patterns discovery challenge on thrombosis data.  Proceedings of the 5th European Conference on Principles and Practice of Knowledge Discovery in Databases.Freiburg.
  • Kawagoe K, Ueda T. 2002. A similarity search method of time series data with combination of Fourier and wavelet transforms. Proceedings of the Ninth IEEE International Symposium on Temporal Representation and Reasoning (Manchester, UK). 86–93.
  • Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. 2001. Dimensionality reduction for fast similarity search in large time series databases. J Knowledge and Information System. 3:263–286. doi:10.1007/PL00011669.
  • Keogh E, Chu S, Hart D, Pazzani M. 2004. Segmenting time series: A survey and novel approach.In Data mining in time series databases:1-21
  • Keravnou E, Shahar Y. 2005. Temporal reasoning in medicine. In: Fisher MD, Gabbay DM, Vila L, editors. handbook of temporal reasoning in artificical intelligence. Amsterdam (The Netherlands): Elsevier; p. 587–653.
  • Lei Ba J, Kiros JR, Hinton GE. 2016. Layer normalization. [Accessed 2016 Dec 1]https://arxiv.org/abs/1607.06450.
  • Lin J, Keogh E, Wei L, Lonardi S. 2007. Experiencing SAX: a novel symbolic representation of time series. Dmkd J.15(2):107–144.
  • Lovric M, Milanovic M, Stanenkovic M. 2014. Algorithmic methods for segmentation of time series:An overview. J Contemp Econ Bus Issues. 1(1):31–53.
  • Miksch S, Horn W, Popow C, Paky F. 1996. Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated new born infants. Artif Intell Med. 8:543–576. doi:10.1016/S0933-3657(96)00355-7.
  • Moller MF. 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 6:525–533. doi:10.1016/S0893-6080(05)80056-5.
  • Moskovitch R, Shahar Y. 2014. Classification of multivariate time series via temporal abstraction and time intervals mining. Knowl Inf Syst. 42(1):1–40.
  • Nehemiah HK, Kannan A, Vijaya K, Jane YN, Merin BJ. 2007. Intelligent rule mining for decision making from clinical data sets. Int J Bioinf Med Eng. 7(1):37–45.
  • O Connor MJ, Grosso WE, Tu SW, Musen MA. 2001. RASTA: a distributed temporal abstraction system to facilitate knowledge-driven monitoring of clinical databases. MedInfo. 10:508–512.
  • Ohsaki M, Sato Y, Yokoi H, Yamaguchi T(2002). A rule discovery support system for sequential medical data, in the case study of a chronic hepatitis dataset. International Workshop on Active Mining,IEEE International Conference on Data Mining (Japan); p. 97–102.
  • Peng L, Liu S, Liu R, Wang L. 2018. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy. 162:1301–1314. doi:10.1016/j.energy.2018.05.052.
  • Sacchi L, Larizza C, Combi C, Bellazzi R. 2007. Data mining with temporal abstractions: learning rules from time series. Data Min Knowl Discovery, Springer. 15:217–247. doi:10.1007/s10618-007-0077-7.
  • Semrl A (1999) Real time monitoring of dense continuous data .Paper Presented at Computers in anaesthesia and intensive care: Knowledge based information management (Aalborg, Denmark).
  • Shahar Y, Musen MA. 1993. RESUME: a temporal-abstraction system for patient monitoring. Comput Biomed Res. 26(3):255–273.
  • Shahar Y, Musen MA. 1996. Knowledge-based temporal abstraction in clinical domains. Artif Intell Med. 8(3):267–298. doi:10.1016/0933-3657(95)00036-4.
  • Stacey M, McGregor C. 2006. Temporal abstraction in intelligent clinical data analysis: A survey. Artif Intell Med. 39:1–24. doi:10.1016/j.artmed.2006.08.002.
  • Thrombosis dataset for discovery challenge. 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases, September 1 5–18, 1999, Prague, Czech Republic. [Accessed 2006 Jan 1]. http://lisp.vse.cz/pkdd99/.
  • Tsumoto S (1999). Guide to the medical data set. In: Berka P ed. PKDD.99 Workshop Notes on Discovery Challenge. Prague.
  • Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ. 1989. Phoneme recognition using time-delay neural networks. IEEE Trans Acoust. 37(3):328–339. doi:10.1109/29.21701.
  • Wang L, Huanling H, Xue-Yi A, Liu H. 2018. Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm. Energy. 153:801–815. doi:10.1016/j.energy.2018.04.078.
  • Wilcoxon F. 1945. Individual comparisons by ranking method. Biometrics. 1:80–83. doi:10.2307/3001968.
  • Winters PR. 1960. Forecasting sales by exponentially weighted moving averages. Manage Sci. 6(3):324–342. doi:10.1287/mnsc.6.3.324.
  • Wright DJ. 1986. Forecasting data published at irregular time intervals using extension of Holt s method. Manage Sci. 32:499–510. doi:10.1287/mnsc.32.4.499.
  • Wu Y, Agrawal D, El Abbadi A(2000). A Comparison of DFT and DWT based similarity search in time-series databases In Proceedings of the Ninth ACM International Conference on Information and Knowledge Management (New York, NY): 488–495
  • Zimmerman DW. 1997. A note on interpretation of the paired-samples t test. J Educ Behav Stat. 22(3):349–360.
  • Zytkow J, Gupta S (2001). Guide to medical data on collagen disease and Thrombosis. In: Berka P ed. PKDD2001 Discovery Challenge on Thrombosis Data. Freiburg.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.